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Abstract

The anchoring of inflation expectations is a major objective of modern monetary

policy. This paper estimates variation over time in the sensitivity of inflation expectations

to news. The function describing the response of an agent’s expectations to news is

fundamentally unobservable since on a given date we only see the single realization of

news that actually occurred. However, under the assumption that agents apply Bayes’

rule and that they believe their signals are Gaussian (hence allowing for a wide range of

behavioral biases), the marginal response of expectations to signals is proportional to

agents’ uncertainty about future inflation. Empirically, both in the time-series and the

cross-section, reported uncertainty both contemporaneously explains and also predicts

the future sensitivity of expectations to news. The results imply that as of 2025,

inflation expectations are 2–3 times more sensitive to news than prior to 2020.

One of the primary goals of modern monetary policy is ensuring that inflation expectations

remain well anchored. Anchoring is taken in some loose sense to mean that expectations

are not too sensitive to news and therefore do not fluctuate very much. One can think

of backward-looking, contemporaneous, and forward-looking measures of anchoring. A

backward-looking measure would simply ask whether inflation expectations were insensitive

to news and stable over some period. Contemporaneously, the question is how sensitive

expectations are to news today: what is the slope of the function mapping today’s signals to

expected future inflation? A forward-looking measure then would try to forecast that slope

in the future.

*Dew-Becker: Federal Reserve Bank of Chicago; Giglio: Yale University; Molavi: Northwestern
University. The views in this paper are those of the authors and do not represent those of the Federal
Reserve Bank of Chicago.
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The core difficulty is that we only observe expectations in the data conditional on the

news that was actually realized. Without further assumptions, it is not possible to estimate

the slope of the response of expectations to news only having observed the actual news that

was realized. Just measuring the past volatility of changes in expectations is also not enough.

First, a backward-looking measure like that does not directly answer the question of how

stable expectations are going forward. More importantly, though, expectations could have

been volatile either because they were sensitive to news, or because the news was extreme.1

This paper’s goal is to ask how well anchored expectations are by measuring, in real time,

how sensitive expectations are to pieces of information – such as inflation announcements –

holding their content (i.e. the size of the surprise) fixed.

Contribution

Measuring how inflation expectations will react to future news necessarily requires thinking

about how people would change their expectations depending on what actually happens in

the future. That is, it involves estimating counterfactuals, which fundamentally requires

imposing structure (or, as in Armantier et al. (2022), discussed further below, one can directly

ask people about hypotheticals). This paper imposes a narrow structural assumption,

which is simply that agents update the expectations using Bayes’ formula and they assume

their signals about future inflation have normally distributed errors. Note, critically, the

assumption is not that they are fully rational Bayesians – we discuss a wide range of

behavioral biases that are allowed within the analysis.

Given the setup, the paper’s core theoretical contribution is to show that the mapping

from signals to beliefs can be easily and intuitively recovered from an agent’s posterior

distribution. A particularly nice feature of that mapping is that the derivative of expectations

with respect to signals is proportional to agents’ posterior variance – which we refer to as

uncertainty – over future inflation.

The paper then empirically evaluates how well that implication actually describes the

dynamics of beliefs in a panel survey. It provides evidence from instrumental variables

methods supporting the model’s core implication that periods when agents report relatively

high uncertainty should be periods in which their expectations are more sensitive to signals

and more volatile. In other words, agents’ reported uncertainty measures how well anchored

their expectations are.

Finally, we examine data on uncertainty over time in the US, focusing on the post-

2013 period, and find that as of 2025, even after falling significantly since its peak in 2022,

1See Ball and Mazumder (2011) for a discussion of anchoring in terms of either levels of expectations
being stable over time or being insensitive to shocks. See also Kumar, Afrouzi, Coibion and Gorodnichenko
(2015) and the discussion in Armantier et al. (2022)
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uncertainty remained 2–3 times higher than its values prior to 2020, implying expectations

are 2–3 more sensitive to a given shock, and hence 1/3–1/2 as well anchored.

Methods and results

The paper’s basic approach is to think about inflation expectations as coming from a

filtering problem in which agents observe signals about future inflation, which is the latent

state (a recent example of such a setup is Carvalho, Eusepi, Moench and Preston (2023)).

If agents act under the assumption that signals are Gaussian (which can be motivated, for

example, by assuming that they observe a large number of weakly informative signals with

arbitrary distributions, or that they use normality as a simple rule of thumb), the Bayesian

update step in the filter – the mapping from signals to expectations – can be expressed

as a power series in terms of the realized signal scaled by its precision. Dytso, Poor and

Shitz (2022) show that the coefficients in the power series are actually equal to the agents’

posterior cumulants. The first derivative is the posterior variance, the second the posterior

third moment, and the nth is the posterior (n+ 1)th cumulant.

The fundamental goal in quantifying anchoring is to estimate an unobservable function:

the mapping from signals to posterior expectations. The filtering theorem shows that there

is a duality: the posterior distribution can be transformed to yield the mapping from signals

to expectations.

All of that depends on the assumption that agents apply some form of Bayes’ formula

under the belief that their signals are normally distributed. That assumption is certainly

not literally true, and it might not even be approximately true, so the paper’s next task is

to evaluate how well the model’s duality prediction actually describes the data. The fact

that the response function is not observable means that it is not possible to directly test the

model (or any model of the response function, for that matter). The first-order prediction,

though, is that agents’ beliefs are more sensitive to signals when their uncertainty is higher,

and we can evaluate that in the data in the sense of asking whether their beliefs in those

periods covary more strongly with inflation surprises and are more volatile.

While there are a number of data sources with information on inflation expectations, the

paper focuses primarily on the New York Fed’s Survey of Consumer Expectations (SCE). The

SCE is particularly useful here because it has data available at the monthly frequency and

asks respondents to provide distributions for future inflation outcomes. The main drawback

of the SCE, on the other hand, is that the inflation forecasts for which there is a long time

series are only at the one- and three-year horizons, whereas policymakers often focus more

on longer-term expectations.

From a time-series perspective, periods in which people in the SCE on average report
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higher uncertainty are also periods in which reported average expectations covary more

strongly with surprises in realized inflation and are more volatile. However, there is an

identification problem, which is that the precision of signals – which is not observable –

likely varies over time and across people and is inevitably correlated with their uncertainty.

Low signal precision mechanically drives future uncertainty up. In the other direction,

high uncertainty might cause agents to gather more information, increasing signal precision.

So the two variables influence each other, and even ignoring structural relationships, both

variables could obviously be simultaneously driven by some third factor.

We therefore use the panel dimension of the data to run an instrumental variables

analysis. We argue, based on the evidence of Kim and Binder (2023), that tenure in the survey

is a useful instrument for uncertainty. Over the course of respondents’ time in the survey,

their reported uncertainty about future inflation declines, showing that the instrument is

relevant. The decline in uncertainty is consistent with people on average paying more

attention to inflation while they are in the survey than they did previously. It is natural

to think that after being asked many questions about inflation news about it would be

more salient, and the questions in the survey themselves contain implicit information about

inflation (e.g. its typical scale). The exogeneity assumption is that attention is orthogonal

to tenure – that is, while people pay more attention while in the survey than they did

previously, we need the restriction that their attention does not decline over the course of

the survey. The fact that uncertainty declines monotonically suggests that attention remains

at least somewhat stable across months of tenure. The availability of this instrument is

another feature of the SCE that distinguishes it from other surveys, such as the Survey of

Professional Forecasters.

In the cross-section of the SCE, the reduced-form finding is that the survey respondents

with low tenure have relatively high uncertainty and their expectations both covary more

strongly with inflation surprises and are more volatile overall than those of respondents with

high tenure, consistent with the model. Under the instrumental variables interpretation,

then, the second stage says that high uncertainty is associated with larger responses to

inflation surprises and greater volatility in beliefs: respondents with low tenure have expectations

that are more weakly anchored than those with high tenure under both the level and shock

concepts of Ball and Mazumder (2011).

Everything so far has been about contemporaneous anchoring – understanding the model’s

prediction that the sensitivity of expectations to signals today depends on today’s posterior

cumulants. For many practical purposes, though, what matters more is the sensitivity of

expectations to signals going forward. That is much more of a forecasting problem than a
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structural identification problem. The question is simply what variables can help us predict

the future sensitivity of expectations to signals. The model implies that the way to do that

is by forecasting uncertainty and signal precision.

Empirically, the analysis finds that current uncertainty does in fact have forecasting power

for the future behavior of expectations. As a specific example, SCE inflation expectations

became much more volatile and sensitive to inflation news in 2021 and 2022, exactly when

uncertainty was high. Interestingly, uncertainty rose before expectations did. Furthermore,

while uncertainty reported in the SCE has come back down from its peak, even as of

December, 2025 it was at last twice as high as its value prior to 2020.

Related work

A highly complementary approach to what is in this paper, taken by Armantier, Sbordone,

Topa, van der Klaauw and Williams (2022), is to directly ask people about how their

expectations would change in response to certain specific events, such as particular realizations

of inflation or unemployment.2 However, there are as yet no surveys systematically asking

such questions, both limiting their practical use currently, and also making them difficult to

test (do people actually respond to events the way they say they will?). Additionally, it is

often desirable to combine survey data with expectations constructed from financial market

data, and it is not clear how to map hypotheticals into asset prices (at least given currently

existing derivatives markets).

Carvalho et al. (2023) is also very closely related. That paper posits a New Keynesian

structure for inflation dynamics and then assumes that agents form expectations through a

rule of thumb filtering rule. The inflation process in that paper is one particular case of the

general class of processes allowed in this paper’s analysis. The primary contrast is that this

paper assumes that agents are Bayesian or quasi-Bayesian, whereas Carvalho et al. (2023)

assumes they are boundedly rational. That paper also estimates a fully specified model for

inflation and expectations, whereas the nature of the more general setup here means that it

does not yield a full description of dynamics.

Given this paper’s focus on the conditional distribution of future inflation, it is naturally

also related to work that studies option-implied distributions, including Kitsul and Wright

(2013), Fleckenstein, Longstaff and Lustig (2017), Mertens andWilliams (2021), and Hilscher,

Raviv and Reis (2025). The basic implication of this paper’s analysis is that option-implied

uncertainty would also be a measure of expectational anchoring, and studying that would

be a straightforward extension of the analysis.

2Ameriks, Caplin, Laufer and Van Nieuwerburgh (2011) introduce the idea of strategic surveys as a
solution to the sort of identification problem that this paper faces. When counterfactuals are not observable,
the approach is to simply ask about them.
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More generally, Reis (2025) reviews recent evidence on inflation expectations and their

link to post-Covid inflation. This paper builds closely on that work by asking what factors

drive expectations. Reis (2025) emphasizes the causal effects that expectations can have.

The evidence this paper presents that expectations are now less firmly anchored than prior

to Covid then suggests that inflation itself may in the future be more volatile. See also

D’Acunto and Weber (2024) and Coibion and Gorodnichenko (2025).

Outline

Section 1 develops the paper’s core economic structure and the link between posterior

beliefs and the response function for expectations. Section 2 examines how the theory can

be tested empirically and section 3 provides estimates. Finally, section 4 studies the model’s

implications for forecasting expectational anchoring going forward and section 5 concludes.

1 Theory

The aim of this section is to understand how to measure the response of an agent’s beliefs

about inflation to signals they observe. Specifically, given a signal yt, with π∗
t being the

object agents are learning about, we want to understand properties of the function

E [π∗
t | yt] (1)

where E is a subjective expectation operator. There is no assumption yet about its rationality

or any of its other properties.

1.1 Economic environment

The log price level is denoted by pt. H-period inflation starting at date t is

πt,t+H = pt+H − pt (2)

The survey data that we use asks agents about inflation over 12-month periods starting

immediately and 24 months in the future, so that π∗
t = πt+j,t+j+H , with j ∈ {0, 24}.

Assumption 1 π∗
t follows an arbitrary (discrete-time) stochastic process. In particular, is

not necessarily linear, Gaussian, or homoskedastic.

Given the observed dynamics of inflation, assuming π∗
t is normal here would fail to fit

many features of the data.

We assume that agents receive signals about future inflation.
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Assumption 2 Agents receive a signal yt about π
∗
t which they assume (possibly incorrectly)

is distributed as

yt ∼ N
(
π∗
t , σ

2
t

)
(3)

σt contains no information about future inflation beyond what is contained in yt itself.

In practice the signal is agent-specific, and below we add an i subscript to indicate

different agents.

To be clear, agents are modeled here as receiving information about the future. yt gives

them information about inflation that will be realized in future months. An infinitely precise

signal would represent a crystal ball or oracle that perfectly reveals the future.

The assumption that agents treat the signals as conditionally normally distributed is

somewhat restrictive (if very standard), but necessary for the main theorem we use below.3,4

Note, though, that we neither assume that the signal is truly normally distributed nor that

its mean and variance are actually π∗
t and σ2

t .

1.2 A duality result for updating

The inflation forecasting problem here is a filtering problem: π∗
t is a dynamic latent variable

about which agents receive signals. The usual Kalman filter does not apply, though, because

we allow for arbitrary dynamics for π∗
t . The two general filtering steps are prediction – going

from a date-(t− 1) posterior to a date-t prior – and an update – going from the date-t prior

to the date-t posterior (conditional on the date-t signal) using Bayes’ formula.

Assumption 3 On all dates agents have probability distributions over potential values of π∗
t .

The distributions are updated using Bayes’ formula based on their beliefs about the dynamic

process driving π∗
t and the signal distribution (assumption 2).

Assumption 3 says that agents are rational to the extent that their beliefs can be described

by probability distributions that they update via Bayes’ formula. It does not impose though,

3One way to motivate it is to assume that agents receive many independent signals centered on π∗
t , each

with very low precision, that have arbitrary distributions. Then the martingale central limit theorem implies
that the sum of the signals (i.e. yt) is asymptotically – as the precision goes to zero and the number of
signals goes to infinity at the same rate – normally distributed and the sufficient statistic for the Bayesian
update (Hall and Heyde (2014)). Alternatively, agents might truly receive normally distributed signals, or,
again, they might assume normality as a simple rule of thumb.

4There are other versions of theorem 1 below for alternative error distributions for the signal. In general
a result can be derived when the distribution is in an exponential family. We use the normal distribution
here just because it is a standard benchmark and natural if agents observe many independent sources of
information.
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that their specification for either the signals (assumption 2) or for the dynamics of π∗
t is

correct. Appendix B.1 describes a range of deviations from full rationality that the analysis

allows.

Definition 1 E [x | yt] denotes the expectation and κj (x | yt) denotes the jth cumulant of

x given the history of signals observed up to date t, yt ≡ {yt, yt−1, ...}, under the agent’s

subjective probability distribution.

Recall that the first three cumulants are identically equal to the first three central

moments. While the following result uses all the cumulants, we ultimately only discuss

the first three.

Theorem 1 [Dytso, Poor and Shitz (2022) theorem 4] Under assumptions 2 and 3, there

exists a neighborhood of any point Ȳ such that for all Y in that neighborhood,

E
[
π∗
t | yt = Y, yt−1

]
=

∞∑
j=0

κj+1

(
π∗
t | yt = Ȳ , yt−1

)
j!

(
Y − Ȳ

σ2
t

)j

(4)

See appendix A for proofs.

One way to think about equation (4) is to take Ȳ to be the value of the signal that

was actually realized and Y to be a counterfactual value. It then shows that a feasible

way to measure our fundamental object of interest, the posterior mean for counterfactual

values of the signal, is with a power series in which the coefficients are the realized posterior

cumulants. That is the key result driving the paper’s analysis and what we will aim to test

empirically.

To simplify the notation going forward, we denote the posteriors on date t by

Et [·] ≡ E
[
· | yt

]
(5)

κj,t ≡ κj

(
π∗
t | yt

)
(6)

Corollary 1 The local sensitivity of expectations to signals is

d

dyt
κ1,t = κ2,tσ

−2
t (7)

Figure 1 displays an example of the posterior expectation as a function of the signal. The

mapping is in general nonlinear, and its slope at each point is equal to the posterior second

moment for that value of the signal. The full behavior (when the power series converges

globally) is described by the power series in (4). For relatively low signals, the posterior
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variance is small and the posterior expectation is relatively insensitive to signals. For high

signals, the posterior variance is high and the expectation is much more sensitive.

Figure 1: Hypothetical Bayesian update
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Note: The figure assumes a prior distribution π∗ ∼ χ2(3) and that y ∼ N(π∗, (1/2)2). The lines plot the

posterior mean and variance for π∗ conditional on the observed signal.

1.3 Higher-order updating

Beyond the first moment, the same sort of analysis that proves theorem 1 also yields the

following more general result:

Theorem 2 Under the same assumptions as theorem 1,

d

d
(
ytσ

−2
t

)κj,t = κj+1,t (8)

Specifically, for j = 2,
d

dyt
κ2,t = κ3,tσ

−2
t (9)

This result is important in analyzing endogeneity below because it says that κ2,t is

driven by the same signals that drive expectations, κ1,t – uncertainty cannot be taken to be

exogenous.

Equation 9 shows that when agents have positively skewed beliefs, so that the right tail

of their distribution is longer than the left, positive signals about π∗
t make that long right
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tail the more likely outcome and raise uncertainty. That is important in thinking about

anchoring. If κ2,t measures how well anchored beliefs are, then κ3,t determines the stability

of the anchor.

Figure 2 helps visualize that idea. If an agent has a positively skewed prior, then a

positive signal about inflation raises the probability associated with the right-hand side of

the distribution, which is more spread out, raising the posterior variance. While the intuition

is fairly simple, part of what is surprising about equation (9) is that it really is the third

moment alone that determines how the second moment responds to signals.

Figure 2: The effect of updating on the posterior variance
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Note: The blue line represents some aribtrary prior distribution for π∗. When signals are relatively high

(roughly, above the prior mean), the right-hand side of the distribution becomes more likely and thus

agents’ conditional variance for π∗ rises. When signals are low, the conditional variance falls.

2 Empirically evaluating the relationship between uncertainty

and sensitivity

This section develops an approach to empirically testing the predictions from section 1.

The key question is whether, all else equal, higher uncertainty is associated with

greater sensitivity of expectations to signals. The analysis shows that in general

regressions of the sensitivity of expectations to news on uncertainty are biased and then

shows how that bias can be eliminated with an instrument for uncertainty.
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2.1 Information structure using inflation as a signal

In taking the model to the data, we want to ask how beliefs respond to realized inflation,

but agents obviously have many sources of information beyond just aggregate inflation. This

section therefore describes a slight generalization of the analysis above that allows agents to

observe two signals – realized inflation and a second factor combining all their unobserved

sources of δ. In order to rationalize treating realized inflation, πt, as a signal, we assume

just for this part of the analysis the following:

Assumption 4 Inflation follows a trend-plus-noise model of the form

πt ∼ N
(
π∗
t , σ

2
π,t

)
(10)

Assumption 5 Agents receive two signals. The first, si,t, is related to realized inflation and

is distributed as

si,t ∼ N
(
πt, σ

2
s,i,t

)
(11)

∼ N
(
π∗
t , σ

2
i,t ≡ σ2

π,t + σ2
s,i,t

)
(12)

(where the second equation inserts assumption 4). The second signal, xi,t, is distributed as

xi,t ∼ N
(
π∗
t , σ

2
x,i,t

)
(13)

si,t and xi,t are independent conditional on π∗
t .

si,t represents the information that agents get from realized inflation, while xi,t represents

the independent part of all the other information they observe, which might include policy

announcements or information about other features of the economy. Corollary 1 then implies

that the sensitivity of expectations to signals is

d

dsi,t
κ1,i,t = κ2,i,tσ

−2
i,t (14)

The derivative represents how the agent’s beliefs would change had they observed a different

value of si,t, holding xi,t fixed. That result holds because the marginal sensitivity to any

signal is equal to the posterior variance, κ2,i,t, multiplied by the signal’s precision.

Equation (14) can be applied to the data with the following result:
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Proposition 1 Under assumptions 2–5, the change in agent i’s expectations, ∆κ1,i,t, satisfies

∆κ1,i,t = σ−2
i,t κ2,i,tπ̂i,t + εi,t (15)

where εi,t ≡ σ−2
i,t κ2,i,t (si,t − πt) + fi,t−1 (xi,t) + o (si,t − κ1,i,t−1) (16)

and π̂i,t ≡ πt − κ1,i,t−1 (17)

fi,t−1 (·) is a function representing how expectations are updated given the unobservable

component of agent i’s information, xi,t.
5

Changes in expectations naturally depend on the surprise in inflation, π̂i,t, and errors in

agents’ observation of inflation (si,t − πt), scaled by their uncertainty and precision, based

on equation (14). In addition, there is a residual term that accounts for other information

that agents observe, xi,t, via the function fi,t−1, and higher order effects. The goal is to

estimate equation (15) to evaluate whether the sensitivity of expectations to signals depends

on uncertainty.

Proposition 15 shows that we can effectively think of a regression of the change in

expectations on the product of uncertainty and the inflation surprise. Both the agents’

observation errors and their other information will then be absorbed into the residual.

2.2 Bias in OLS estimates

In the empirical analysis, each agent’s individual signal precision σ−2
i,t is not observable.

Suppose, though, that κ2,i,t is observable. A natural feasible way to try to estimate the

sensitivity of expectations to realized inflation – which the model says should be equal to

σ−2
i,t – would be to regress ∆κ1,i,t on κ2,i,tπ̂i,t. Unfortunately, that does not work in general.

Proposition 2 The OLS estimator of the coefficient in a regression of ∆κ1,i,t on κ2,i,tπ̂i,t,

denoted β̂
OLS

, is

β̂
OLS

= Ê
[
σ−2
i,t

]
+ ĉov

(
σ−2
i,t ,

κ2
2,i,tπ̂

2
i,t

Ê
[
κ2
2,i,tπ̂

2
i,t

])+
Ê [κ2,i,tπ̂i,tεi,t]

Ê
[
κ2
2,i,tπ̂

2
i,t

] (18)

and Ê and ĉov are the sample mean and covariance, respectively.

The first term in equation (18) is what we want to estimate. However, since information

causes agents to update their beliefs, including their posterior variance, εi,t will be correlated

5Specifically, fi,t−1 (xi,t) = E
[
π∗
t | yt−1

i , xi,t, ŝi,t = 0
]
− E

[
π∗
t−1 | yt−1

i

]
.
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with κ2,i,t, potentially leading to a bias because the third term can be nonzero. The

second term in (18) shows that an additional bias can arise if signal precision is correlated

with agents’ variances, κ2,i,t. Those two variables naturally should be linked since agents’

variances depend on the information they’ve received.6 When precision is higher, all else

equal, variance will fall. A valid estimator of Ê
[
σ−2
i,t

]
needs to account for both sources of

bias.

2.3 Instrumental variables methods

To avoid the endogeneity of uncertainty to both σ−2
i,t and εi,t, we instrument for uncertainty.

Motivated by the results in Kim and Binder (2023), we use tenure in the survey as an

instrument for uncertainty. The basic identifying assumption is then that tenure, zi,t, is

orthogonal to εi,t, while instrument relevance requires that zi,t is related to κ2,i,t. Kim and

Binder (2023) show (and we confirm below) that the latter condition holds. Kim and Binder

(2023) discuss how an explanation for the decline in uncertainty associated with tenure is

that when people are included in the survey they pay more attention to inflation news, and

they might even learn from the survey itself. That suggests that people in the survey receive

more precise signals than they did prior to the survey – σ2
s,i,t and σ2

x,i,t are lower – which

then eventually leads them to have lower uncertainty. In other words, the “treatment” here

is the survey itself.

Figure 3 visualizes the basic idea behind the identification. The x-axis represents the

number of months since a respondent has entered the survey. The key assumption is that

when people enter the survey, they pay more attention to inflation, which appears here as

an increase in signal precision. That then causes their’ conditional variance (κ2,i,t) to drift

down. The identification in the regression comes from the within-person variation, where

their uncertainty falls with tenure.

The figure also helps to see what would cause a bias, which is if attention varies systematically

with tenure. If attention rises with tenure, that would counteract the effect of uncertainty

and bias our estimates towards zero, whereas if it falls, that would compound the effect of

uncertainty and cause us to overestimate the dependence of updating on uncertainty. Note

that the assumption is not that signal precision is constant; it just needs to be unrelated to

tenure (formalized in assumption 7 below). While attention obviously could systematically

vary with tenure, it is not obvious whether it would rise or fall, and on average across people

it might be constant. Furthermore, even if there are differences across tenure, the first-order

6Dew-Becker, Giglio and Molavi (2026a) give general formulas for how uncertainty evolves as a function
of signal precision, formalizing that intuition.
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Figure 3: Intuition behind the identifying assumption
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Note: The figure shows signal precision and uncertainty for a hypothetical agent who satisfies the

identifying assumption. They enter the survey at point 0 on the x-axis. The blue line represents their

uncertainty (κ2,i,t) and the orange line the precision of their signals (σ2
s,i,t) – how much attention they

pay to inflation. In the period that they are in the survey, the assumption is that attention is unrelated

to tenure (though need not be constant), leading uncertainty to progressively decline.

point is simply that being in the survey is very different from not being in it.

2.3.1 Problems with two-stage least squares

The usual approach to using an instrument is two-stage least squares (2SLS). Appendix B.2

discusses three reasons why 2SLS is ill-suited to this paper’s setting. The first major issue

is that the endogenous variable here – κ2,i,t – enters the regression as an interaction. As

Wooldridge (2015) discusses, that poses a problem for 2SLS because it is not valid to insert

a fitted value from a first stage into an interaction. Instead, the interaction must be used

as the dependent variable in the first stage, which can lead to a weak instruments problem

that we show is practically relevant in our empirical application.

Beyond that, 2SLS estimates a weighted sum of σ−2
i,t across agents (the local average

treatment effect). The weights in that average are not in general positive, though, meaning

that the estimated coefficient from 2SLS here is not a conventional weighted average and it

is thus difficult or impossible to interpret economically.
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2.3.2 Control function estimator

Wooldridge (2015) and Masten and Torgovitsky (2016) discuss how the control function

approach to IV estimation is well suited to addressing both the problem of an average with

negative weights and the endogenous variable entering as an interaction.

To use a control function type estimator, we need the following auxiliary assumption,

analogous to a first-stage regression.

Assumption 6 Given an instrument zi,t (tenure in our case), κ2,i,t has the first-stage representation

κ2,i,t = G (zi,t, π̂i,t, vi,t) (19)

for a function G that is monotone in its third argument and where vi,t is a scalar random

variable.

A special case of (19) is the usual linear first stage, κ2,i,t = b0 + b1zi,t + vi,t. Whatever is

the functional form of G, the implication of assumption 6 is that vi,t can be recovered (up to

a monotone transformation) and then used as a conditioning variable in the second stage.7

In addition to that, we need exogeneity and instrument relevance assumptions.

Assumption 7 κ2,i,t is exogenous and uncorrelated with σ−2
i,t conditional on vi,t and π̂i,t.

Specifically,

E
[
σ−2
i,t | κ2,i,t, vi,t, π̂i,t

]
= E

[
σ−2
i,t | vi,t, π̂i,t

]
(20)

E [εi,t | κ2,i,t, vi,t, π̂i,t] = E [εi,t | vi,t, π̂i,t] (21)

where E denotes the population expectation operator.

Assumption 7 requires that both the endogeneity of κ2,i,t and its correlation with the

latent sensitivity, σ−2
i,t , come entirely through vi,t and π̂i,t, as opposed to tenure, zi,t. Equation

(21) imposes the restriction that tenure is exogenous in the sense that the part of κ2,i,t driven

by tenure (i.e. the part not driven by vi,t and π̂i,t) is unrelated to the residual εi,t. Equation

(20) says that the part of κ2,i,t driven by tenure is also unrelated to signal precision in the

cross-section, which is what we need in order to estimate the cross-sectional mean of σ−2
i,t .

That condition formalizes the restriction described above that we need tenure to be unrelated

to signal precision.

7Additional observable controls may be added to G if desired. What is critical is simply that, given the
observables, G can be inverted to recover v.
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Assumption 8 The instrument relevance condition is

var (κ2,i,t | π̂i,t, vi,t) ̸= 0 (22)

We then have the following standard result for the validity of the estimator.

Proposition 3 Under assumptions 6–8, the second-stage regression can be estimated conditional

on the values of vi,t and π̂i,t, with

∆κ1,i,t = κ2,i,tπ̂i,tE
[
σ−2
i,t | vi,t, π̂i,t

]
+ E [εi,t | vi,t, π̂i,t] + ηi,t (23)

where ηi,t ≡ ∆κ1,i,t − E [∆κ1,i,t | κ2,i,t, vi,t, π̂i,t] (24)

Assumption 8 ensures that there is variation in κ2,i,tπ̂i,t so that E
[
σ−2
i,t | vi,t, π̂i,t

]
is identified.8

Equation (23) is simply a regression of ∆κ1,i,t on κ2,i,tπ̂i,t interacted with E
[
σ−2
i,t | vi,t, π̂i,t

]
along with whatever additional terms are necessary to capture E [εi,t | vi,t, π̂i,t]. These expectations

are not directly observed, so Newey and Stouli (2021), for example, suggest fitting them

with a sieve-type estimator in which the two conditional expectations are approximated by

polynomials in vi,t and π̂i,t. For example, if the expectations are approximated as linear

functions of vi,t and π̂i,t, then the regression would be of ∆κ1,i,t on [κ2,i,tπ̂i,t, 1]⊗ [1, vi,t, π̂i,t]

where ⊗ denotes the Kronecker product. It is natural to also control for vi,tπ̂i,t since that

directly absorbs the potentially endogenous part of κ2,i,tπ̂i,t, so our baseline set of right-hand

side variables will be [κ2,i,tπ̂i,t, π̂i,t, 1]⊗ [1, vi,t, π̂i,t].

The control function approach has the advantage that it yields estimates of E
[
σ−2
i,t | vi,t, π̂i,t

]
.

To get the unconditional mean of σ−2
i,t , which is the parameter of interest, we can simply

average across values of vi,t and π̂i,t. As Masten and Torgovitsky (2016) emphasize, the

control function (CF) approach therefore yields an estimate of the parameter of interest,

E
[
σ−2
i,t

]
, rather than a weighted average.

The CF approach therefore addresses all three concerns in 2SLS estimation: the first-

stage does not involve an interaction, thus reducing the weak instruments problem; even

if σ−2
i,t is correlated with κ2,i,t the method can still yield an estimate of its unconditional

mean; and since the estimator is not a weighted average, there is no concern of the weights

potentially being negative.

8To derive equation (23), take the expectation of equation (15) conditional on {κ2,i,t, vi,t, π̂i,t} and apply
assumption 7.
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2.4 Estimation for squared changes in beliefs

A simpler approach to estimating the sensitivity of expectations to news is just to look at the

magnitude of their changes. If we take the benchmark case from section 1 (i.e. assumption

2) that agents have a single composite signal yi,t,
9 then equation (4) yields the following:

Proposition 4 Under assumptions 2 and 3,

∆κ2
1,i,t = κ2

2,i,tσ
−4
i,t ŷ

2
i,t + λi,t (25)

where λi,t is a residual.

Note that proposition 4 does not require assumptions 4 and 5; all it needs is the basic

assumptions that yield the power series for the conditional expectation from theorem 1.

Now consider a control-function type regression – using the same control function, (19),

as above – for (∆κ1,i,t)
2. The analog to equation (23) in proposition 3 is

∆κ2
1,i,t = κ2

2,i,tE
[
σ−4
i,t ŷ

2
i,t | vi,t

]
+ E [λi,t | vi,t] + µi,t (26)

where µi,t is a residual.10 That implies a regression of ∆κ2
1,i,t on κ2

2,i,t interacted with a

constant and functions of the control function vi,t.

One assumption that allows for a simple interpretation of the coefficient in (26) is that

ŷ2i,t is unpredictable by vi,t.
11 Then

E
[
σ−4
i,t ŷ

2
i,t | vi,t

]
≈ E

[
σ−2
i,t | vi,t

]
(30)

9In the context of the analysis of inflation as a signal (which uses stronger assumptions than the present

resutls), yi,t would be constructed as yi,t =
(
σ−2
x,i,txi,t + σ−2

s,i,tsi,t
) (

σ−2
x,i,t + σ−2

s,i,t

)−1
, but this section does not

need the particular structure from assumptions 4 and 5.
10Formally, assumptions 6 and 8 are still required and the analog to assumption 7 is

E
[
σ−4
i,t | κ2,i,t, vi,t, π̂i,t

]
= E

[
σ−4
i,t | vi,t, π̂i,t

]
(27)

E [λi,t | κ2,i,t, vi,t, π̂i,t] = E [λi,t | vi,t, π̂i,t] (28)

11Using theorem 2 and defining κ0
n,i,t to be the nth posterior cumulant conditional on ŷi,t = 0, we have

κ2,i,t − κ0
2,i,t = κ3,i,tσ

−2
i,t ŷi,t +

1

2
κ4,i,t

(
σ−2
i,t ŷi,t

)2
+ o

(
ŷ2i,t
)

(29)

The relationship between κ2,i,t, and hence vi,t, and ŷ2i,t therefore comes through the second-order effect of
signals on uncertainty, which in a rough sense implies the relationship might be weak. Additionally, if agents’
beliefs are approximately Gaussian, then κ4,i,t ≈ 0, giving another reason the relationship could be weak.
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under the approximation that E
[
ŷ2i,t | σ−2

i,t , vi,t
]
≈ E

[
σ2
i,t | vi,t

]
. The coefficient on κ2

2,i,t

will then again be an estimate of E
[
σ−2
i,t

]
. More generally, though, if that assumption is

violated, the regression still gives an estimate of the structural relationship between changes

in uncertainty and the cross-sectional average magnitude of changes in beliefs.

3 Panel analysis

3.1 Data

We study the Federal Reserve Bank of New York’s Survey of Consumer Expectations (SCE).

The SCE is well suited to testing this paper’s hypotheses both because it is a relatively large

panel – with respondents remaining in the survey for up to 12 months – and because it is a

representative sample of consumers, meant to capture inflation expectations of typical agents

in the economy. The SCE is also run monthly, rather than quarterly, giving relatively fine

time-series detail, which is useful since the most recent episode of high inflation lasted only

about two years.

The SCE asks respondents about inflation expectations at horizons of 1–12, 25–36,

and 49–60 months. First, it asks for point estimates: “What do you expect the rate of

inflation/deflation to be over the next 12 months? Please give your best guess.” Next, it

asks for probabilities that inflation falls into different bins: “Now we would like you to think

about the different things that may happen to inflation over the next 12 months... what

would you say is the percent chance that, over the next 12 months...” followed by a list of

bins for inflation: >12%, 8-12%, etc. Equivalent questions are asked for annual inflation

starting 24 and 48 months in the future. We use both the point estimates and the bins.

The bins are critical because they make it possible to calculate a mean and conditional

variance for each person. We use the estimates of each respondent’s variance that is constructed

by the administrators of the SCE, who do so by fitting a beta distribution to each respondent’s

reported bin probabilities.12

The paper’s sample period is from the beginning of the SCE in June, 2013, through July,

2025. To get some context, figure 4 plots the time series of headline CPI inflation over that

period along with 1- and 3-year inflation expectations (panel (a)) and with 1- and 3-year

uncertainty (panel (b)), obtained from the SCE.

12They do not calculate a variance for responses that put positive probability on a set of on non-contiguous
bins, and we therefore drop those observations from the analysis. We additionally drop observations where
the variance is greater than 200 squared percentage points and those with bin means outside the 5th and
95th percentiles or where the absolute change in expectations is greater than 8 percentage points.
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Figure 4: Inflation, expectations, and uncertainty
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Note: Panel (a) panel plots CPI inflation (annualized) together with the cross-sectional median 1-year and

3-year inflation expectations from the SCE. Panel (b) plots CPI inflation (left axis, annualized) together

with the cross-sectional median uncertainty measures, at the 1-year and 3-year horizon on the right axis.
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3.2 Calculating inflation surprises

We calculate the inflation surprise in each month for each person as realized inflation – PCE

or CPI inflation, headline or core – minus that person’s expected one-year inflation – either

the point forecast or the mean from the bins – in the previous month.

Since the change in expectations, ∆κ1,i,t is on the left-hand side of the regression, there

might be a concern about using κ1,i,t−1 on the right-hand side of the regression in constructing

the inflation surprise (e.g. if there is measurement error in the expectations). For that

reason, any time the same measure of expectations is on the right- and left-hand sides of the

regression, the analysis uses the second lag of expectations in calculating the surprise. That

is, for those cases π̂i,t = πt − κ1,i,t−2.

In what follows, π̂i,t continues to represent the generic inflation surprise, which may be

measured in any of the ways described above – there are 16 total possible permutations.13.

In the main text, inflation is measured as the CPI headline value. The dependent variable,

∆κ1,i,t is measured based on the mean from respondents’ probability distributions. Inflation

surprises are then measured as realized CPI headline inflation minus lagged expectations.

The main text reports results calculating the surprise relative to either the bin mean or the

point forecast. Robustness to all these choices is reported in the appendix.

3.3 First stage

The first stage, following Kim and Binder (2023), uses tenure in the survey as an instrument

for uncertainty. The top panel of figure 5 plots average uncertainty (the variance, κ2,i,t)

at both the one- and three-year horizons by tenure in the survey. There is a clear negative

relationship, which is statistically well estimated. Most of the decline is in the first few

months of tenure, but even between months 7 and 12 there is a decline in average uncertainty

of 14 percent.

For much of the analysis, we use a simple linear first stage (i.e. the function G in (19)

is linear). Table 1 reports results for the first stage in the CF approach. For all results

here and in the rest of the paper, standard errors are heteroskedasticity robust with two-way

clustering by person and time. The top panel reports results for one-year expectations and

the bottom panel three-year expectations. The first two columns in each panel report results

for regressions of uncertainty on tenure, restricting to either tenure>1 month or tenure>2

months, which corresponds to the two different subsamples that are used depending on the

lag used for expectations in calculating inflation surprises.

13The 16 permutations are from the cross of four binary choices: (1) PCE or CPI; (2) headline or core;
(3) one- or three-year horizon; (4) point estimate or mean from the bins.
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Figure 5: First stage and reduced-form relationships
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Note: In each panel, the lines are point estimates and the shaded regions 95-percent confidence bands.

Standard errors are two-way clustered by person and time. The top panel reports coefficients from a

regression of uncertainty (each agent’s variance) on tenure indicators. The middle panel is from a regression

of the change in each agent’s conditional mean on inflation news interacted with tenure indicators. The

bottom panel is from a regression of the squared change in expectations on tenure indicators.

In columns 1 and 2 in both panels, tenure is highly statistically significant, and the F-

statistics are greater than 100, implying there are no concerns about weak instruments in

this case.
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Columns 3 and 4 control for inflation surprises in addition to tenure. They differ

depending on whether inflation surprises are measured based on the bin mean or point

forecast – with bins, again, the independent variable is entered with two lags since it appears

on the right-hand side in the baseline second stage. In columns 3–4 the t-statistic on tenure

shrinks somewhat, but not enough to raise any weak identification concerns. Looking at the

coefficients themselves, the inflation surprises absorb some of the effect of tenure because

expectations themselves – which are part of the inflation surprise calculation – are also

correlated with tenure.

Table 1: First stage regressions

(a) First Stage, 1 year inflation

(1) (2) (3) (4)
Dep var: Unc. Unc. Unc. Unc.

Tenure -0.377*** -0.264*** -0.183*** -0.195***
(-16.71) (-11.17) (-9.56) (-8.24)

Infl. Surpr. -0.602*** 0.177***
(-7.63) (3.50)

Type of infl. surpr. Point Mean
F-statistic 279.182 124.769 87.305 38.462
R2 0.004 0.002 0.029 0.003
Observations 116,720 104,595 103,888 93,460

(b) First Stage, 3 year inflation

(1) (2) (3) (4)
Dep var: Unc. Unc. Unc. Unc.

Tenure -0.393*** -0.294*** -0.183*** -0.231***
(-17.16) (-12.31) (-8.89) (-9.84)

Infl. Surpr. -0.601*** 0.271***
(-7.65) (5.61)

Type of infl. surpr. Point Mean
F-statistic 294.550 151.649 89.453 59.977
R2 0.004 0.002 0.026 0.005
Observations 117,019 104,827 101,438 92,765

Note: The table reports results of regressions of uncertainty on tenure and inflation surprises, with 1-
year inflation expectations in panel (a) and 3-year expectations in panel (b). The first column restricts
the sample to those with tenure above 1, the second to those with tenure above 2. Columns (3) and
(4) use CPI headline inflation surprises constructed from the point forecast (lagged one month) and
the bin mean (lagged two months), respectively. The regressions correspond to the first stage of the
control-function estimation approach. Robust t-statistics allowing for two-way clustering by person
and time are reported in parentheses. Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A.1 in the appendix reports results for the 2SLS first stage, which is a regression of

the inflation surprise multiplied by uncertainty on the surprise and tenure times the surprise
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(i.e. it is the CF first stage with all variables interacted with the inflation surprise). While

it is true that the F-statistics are large in all cases, they are driven by the presence of the

inflation surprise on the right-hand side. The robust partial F-statistic on the excluded

instrument – π̂i,tzi,t – is equal here to the squared t-statistic, which is 38.1 and 15.3 in the

two columns of panel (a), and 18.8 and 20 for panel (b). The Montiel-Olea–Pflueger (2013)

cutoff for this case is no smaller than 12, indicating that 2SLS is close to weakly identified

here.

3.4 Reduced-form estimates

3.4.1 News regressions

Table 2, columns (1) and (2), reports results for reduced-form regressions of ∆κ1,i,t on π̂i,t

and π̂i,tzi,t for the two inflation surprise measures (point estimate and bin mean). Panel

(a) uses 1-year expectations, panel (b) 3-year expectations. Across both columns, the

coefficient on the inflation surprise is positive and the coefficient on π̂i,tzi,t is negative, both

as expected. Inflation expectations rise when inflation is surprisingly high, and the slope of

that relationship decreases with tenure.
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Table 2: Reduced form regressions

(a) 1 year inflation

Dep. var.: ∆κ1 Dep. var.: (∆κ1)
2

(1) (2) (3)

Tenure × Infl. Surpr. -0.0046*** -0.0021*** Tenure -0.40***

(-8.13) (-3.78) (-19.40)

Infl. Surpr. 0.1112*** 0.0445***

(12.03) (7.31)

Type of infl. surpr. Point Mean

R2 0.0270 0.0040 R2 0.01

Obs. 103,888 93,460 Obs. 118,141

(b) 3 year inflation

Dep. var.: ∆κ1 Dep. var.: (∆κ1)
2

(1) (2) (3)

Tenure × Infl. Surpr. -0.0025*** -0.0007 Tenure -0.40***

(-4.31) (-1.28) (-21.73)

Infl. Surpr. 0.0611*** 0.0244***

(8.59) (4.06)

Type of infl. surpr. Point Mean

R2 0.0070 0.0010 R2 0.01

Obs. 101,438 92,765 Obs. 118,620

Note: The left side of the table shows reduced-form regressions of changes in bin mean expectations
(∆κ1,i,t) on tenure interacted with inflation surprises, as well as the level of the inflation surprise. The
right side regresses the squared changes in expectations (∆κ1,i,t)

2 on tenure. Columns (1)–(2) vary the
construction of the inflation surprise using either the the point forecast (lagged by one month) or the
bin mean (lagged by two months). Robust t-statistics allowing for clustering by respondent and time
are reported in parentheses. Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

To get a sense of magnitudes, the average sensitivity of one-year expectations to news at

tenure = 2 in columns (1) and (2) is 0.10 and 0.06, compared to 0.04 and 0.02 at 12 months.

That is, a person at the end of their time in the sample is on average only half as responsive to

inflation surprises as at the beginning. The sensitivity of three-year expectations also declines

by about half. Table A.2 shows that similar results hold across the range of permutations of

the specification.

The middle panel of figure 5 plots estimates from regressions of ∆κ1,i,t on tenure dummies

multiplied by π̂i,t, yielding estimates of sensitivity to surprises at each level of tenure without
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imposing linearity in the interaction. The negative relationship is clearly apparent. Again,

the estimates imply that sensitivity to inflation surprises fall by about half for agents at the

end of their tenure compared to the beginning.

Kim and Binder (2023) show that in addition to uncertainty declining with tenure,

average inflation expectations do, also. That should cause the average of ∆κ1,i,t to be

negative. If the rate of decline changes with tenure, then tenure would naturally also be

included as a control in these regressions. Table A.3 in the appendix reports results for

regressions analogous to those in table 2 but including tenure as an additional control.

The coefficient on the interaction π̂i,tzi,t is essentially unaffected, which is not surprising.

The estimated coefficient on tenure is positive and the constant in the regression negative,

consistent with average expectations declining, but at a slowing rate, with tenure.

3.4.2 Volatility in expectations

The third column of table 2 reports results from regressions of (∆κ1,i,t)
2 on tenure. The

coefficient is again significantly negative, implying that as tenure increases agents are less

responsive to information overall (under the model that is because their expectations become

more stable). The bottom panel of figure 5 plots the average of (∆κ1,i,t)
2 by tenure bins

(equivalent to a regression with tenure dummies). The negative relationship holds across the

entire range of tenure and is not driven by any particular bin. Note also that the decline is

very similar in shape to the decline in uncertainty itself.

3.5 Second-stage estimates

3.5.1 News regressions

Table 3 reports results from the second stage of the control function estimator.14 The first

row reports the mean sensitivity of expectations to κ2,i,tπ̂i,t (i.e. at the average value of

the various interactions) which, under the model, represents the cross-sectional mean of the

precision of the signal each agent gets from inflation, σ−2
i,t . (The full specification of the

regression is reported in appendix table A.4.) That coefficient ranges between 0.0032 and

0.0229, depending on the specification, and it is statistically well estimated (insignificant only

in column (4)). The point estimates imply that the standard deviation in the noise in agents’

signals about future inflation from current realized inflation is between 7 and 18 percent.

Recall from the model that that noise combines both the gap between realized inflation and

14Standard errors here are constructed by putting the first and second stage regressions into a single GMM
problem so that the standard errors reported in table 3 account for uncertainty in the first stage. As above,
standard errors are two-way clustered by person and time.
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its persistent component and also the difference between what agents “observe” and actual

realized inflation.

Table 3: Second Stage Regression

1 year inflation 3 year inflation

(1) (2) (3) (4)

Unc. × Infl. Surpr., avg marginal effect 0.0229∗∗∗ 0.0114∗∗∗ 0.0120∗∗∗ 0.0032

(6.83) (3.44) (3.71) (1.24)

vi,t × Infl. Surpr., avg marginal effect −0.0245∗∗∗ −0.0127∗∗∗ −0.0134∗∗∗ −0.0046∗

(−7.30) (−3.88) (−4.12) (−1.73)

Other controls Y Y Y Y

Type of infl. surpr. Point Mean Point Mean

Observations 103,888 93,460 101,438 92,765

Note: Results from second-stage regressions of ∆κ1,i,t (measured based on the bin mean) on
interactions of uncertainty (Unc. = κ2,i,t), inflation surprise (π̂i,t), and control function (vi,t).
The regression includes the terms obtained from the Kroneker product of (inflation surprise;
uncertainty×inflation surprise) with (a constant, the control function component, and inflation
surprise). All the coefficients of this regression are reported in table A.4. This table reports the
mean sensitivity of expectations to κ2,i,tπ̂i,t in the first row and the mean sensitivity of expectations to
vi,tπ̂i,t (both computed at the average values of the various interactions). Columns (1)–(2) use different
versions of the inflation surprise—measured based on the point forecast (Point) or the lagged bin mean
(Mean)—for the 1-year inflation expectations. Columns (3)–(4) report the analogous specifications for
the 3-year inflation expectations. t-statistics in parentheses account for sampling uncertainty in the
first stage and allow for clustering by both respondent and time. Significance: * p < 0.10, ** p < 0.05,
*** p < 0.01.

The second row of table 3 reports the mean sensitivity of expectations to vi,tπ̂i,t, which

measures how the sensitivity of expectations to news depends on the endogenous part of

uncertainty – the part not driven by tenure. The fact that the coefficients are negative is

consistent with the idea that agents with high uncertainty are probably people who pay less

attention to inflation on average, so that σ−2
i,t is low, with the result that the net relationship

between sensitivity to inflation and vi,t need not be positive.

Table A.5 reports results from the other 12 permutations of the specification choices

(CPI vs PCE, etc.). While there is variation in the coefficient estimates for κ2,i,tπ̂i,t, they

are broadly consistent with each other and uniformly positive and significant. Table A.6

replicates table 3 but using agents’ point forecast for inflation on the left-hand side instead of

their implied mean. Finally, table A.7 reports results from second-stage regressions including

richer controls – mostly importantly, higher powers of various variables (recalling the sieve

interpretation) – and finds similar results.

For the sake of completeness, table A.8 in the appendix reports the 2SLS second stage

estimates. The coefficients are similar to those obtained via the CF method, as are the
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standard errors, suggesting that in practice both the cross-sectional heterogeneity and first-

stage concerns may not be particularly important.

3.5.2 Volatility in expectations

Table 4 reports results for the second-stage regression of (∆κ1,i,t)
2 on uncertainty. The

estimated sensitivity to κ2
2,i,t is, under the conditions discussed above, again an estimate of

E
[
σ−2
i,t

]
, where here that represents the precision of the total signal that the agents receive

in period t. Intuitively, the idea behind the regression is that, all else equal, when an agent’s

uncertainty is higher, the variance of the change in their expectations should also be higher,

in proportion to the precision of their signals.

Table 4: Second Stage Regression for (∆κ1)
2

1-year inflation 3-year inflation

(1) (2) (3) (4)

(Unc.)2, avg marginal effect 0.1768∗∗∗ 0.0942∗∗∗ 0.2483∗∗∗ 0.0862∗∗∗

(7.25) (13.49) (8.18) (13.80)

v2i,t, avg marginal effect 0.0216∗∗ 0.0121∗∗∗ 0.0543∗∗∗ 0.0207∗∗∗

(2.27) (4.68) (4.83) (9.03)

Type of inflation expectation Point Mean Point Mean

Observations 103,371 118,141 102,113 118,620

Note: Results from second-stage regressions of (∆κ1,i,t)
2 on interactions of uncertainty and the

control-function component. Uncertainty is Unci,t = κ2,i,t. The regression includes terms obtained
from the Kronecker product (1, Unc2i,t) ⊗ (1, vi,t, v

2
i,t, v

inv
i,t ), where vi,t is demeaned and vinvi,t =

(vi,t−min(vi,t)+10)−1. All coefficients from the second-stage regression are reported in the appendix.
This table reports the average marginal effect of Unc2i,t and the average marginal effect of the control-
function component, both evaluated at the sample-average values of the interaction terms. Columns
(1)–(2) use 1-year inflation expectations and columns (3)–(4) use 3-year inflation expectations;
within each horizon, the dependent variable is constructed using point expectations (Point) or
lagged bin means (Mean). t-statistics in parentheses account for sampling uncertainty in the first
stage and allow for clustering by both respondent and time. Significance: * p < 0.10, ** p < 0.05,
*** p < 0.01.

The estimated values of E
[
σ−2
i,t

]
are significantly larger in table 4 than in table 3. That

is exactly what we should expect – agents receive many signals about future inflation beyond

realized current inflation. The results in table 3 indicated that the signal agents got from

inflation had an error with effective standard deviation of 7–18%. Table 4 implies that the

standard deviation of the effective error in their overall signal is between 2 and 3.4%.

The second row of table 4 reports the sensitivity to v2i,t. In this case, in contrast to table

3, the coefficients are positive. The intuition for that result is as follows. Suppose some

agents just pay less attention to the economy and know less about inflation, thus reporting
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distributions that tend to be wider. In table 3, the negative coefficient on vi,tπ̂i,t indicates

those agents’ inflation expectations are less responsive to realized inflation than average. At

the same time, it is plausible that those agents also report expectations that vary somewhat

erratically – given that the do not pay much attention, there is not much reason to expect

any real stability in their reported beliefs. That is why the coefficient in the second row of

table 4 is positive.

4 Time-series analysis

While the panel analysis is useful for directly testing models of beliefs, in practice policymakers

typically focus on the cross-sectional mean or median of beliefs. Additionally, what is relevant

for policymakers is most likely forecasting the sensitivity of beliefs to signals, as opposed to

the contemporaneous relationships the analysis in the previous section tests. This section

therefore examines whether current reported uncertainty in the SCE predicts either future

sensitivity of average expectations to inflation or the magnitude of squared changes in beliefs.

The theoretical analysis stressed the endogeneity of uncertainty to signal precision. Taking

a cross-sectional average helps alleviate that concern because while it seems very likely that

there are people with high uncertainty because they pay little attention to inflation, it seems

less likely that variation over time in average uncertainty is driven by variation over time in

the precision of signals agents observe. It is certainly not impossible, just not as prominent

an issue. Furthermore, in this case we are not so much trying to test the model as simply

ask whether uncertainty is useful for predicting sensitivity to shocks, which, again, is a

forecasting problem and not a causal identification problem.

To align with typical aggregate time series, we first collapse the panel structure into cross-

sectional medians in each period. We then define inflation news as inflation in month t minus

the cross-sectional median of 12-month expected inflation in month t− 2. The expectation

is lagged by two months because the change in inflation, which is on the left-hand side of

the regression, involves expected inflation in month t− 1.

Table 4 reports results from four regressions. The first two are of the change in median

expectations at the one- and three-year horizons on inflation news, both alone and interacted

with the cross-sectional median of uncertainty at date t− 1 (κ2,i,t−1). We subtract the time-

series mean from uncertainty so that the interaction coefficient has a forecasting interpretation:

it gives a forecast at date t−1 of the sensitivity of expectations to inflation surprises on date

t.

In the sample, the standard deviations of one- and three-year uncertainty are 1.4 and
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Table 5: Aggregate Analysis

(1) (2) (3) (4)

Dep. var.: ∆κ1 (1yr) ∆κ1 (3yr) (∆κ1)
2 (1yr) (∆κ1)

2 (3yr)

Infl. Surprise 0.01931** 0.01146***

(2.40) (3.49)

Lagged unc. −0.01638 −0.01846

(−1.02) (−1.28)

Surprise × Lagged unc. 0.00870*** 0.00456**

(3.42) (2.09)

Lagged (unc.)2 0.00372*** 0.00197***

(5.09) (3.72)

Constant 0.00757 0.00385 0.03494*** 0.01735***

(0.38) (0.39) (6.44) (6.94)

F-statistic 8.62 13.24 25.89 13.82

R2 0.223 0.120 0.262 0.138

Observations 140 140 141 141

Note: Column (1) reports results of a time-series regression of the change in aggregate inflation
expectations (cross-sectional median of individual expectations) on CPI inflation surprise, computed
as realized inflation minus two-month-lagged cross-sectional median expectation, lagged aggregate
uncertainty (cross-sectional median of individual uncertainty), and their interaction. Column (2)
repeats the exercise using 3-year inflation expectations and uncertainty. Column (3) regresses
squared changes in 1-year aggregate inflation expectations on lagged squared uncertainty. Column
(4) repeats the exercise using 3-year changes in inflation expectation and uncertainty. All variables
on the right hand side are time-series demeaned. Newey-West t-statistics with 12 lags are reported
in parentheses. Significance: * p < 0.10, ** p < 0.05, *** p < 0.01.

1.0, respectively. In the first column, the coefficient on news is 0.02 – a one percentage point

surprise in annualized monthly inflation raises one-year expectations by 0.02 percentage

points. The coefficient on the interaction with uncertainty is 0.009, meaning that the

standard deviation of that sensitivity is 0.013. For three-year expectations, the mean

sensitivity to inflation surprises is, naturally, smaller at 0.01, and the interaction with

uncertainty is 0.005.

The left-hand panel of figure 6 plots the fitted sensitivity of one- and three-year expectations

from the two regressions. There is a striking degree of variation. At its peak in 2022, the

sensitivity of one-year expectations is estimated to be 0.06. Exactly when inflation was

highest, expectations were most sensitive to inflation surprises. That sensitivity was higher

than the value at the beginning of 2020 by a factor of four. Furthermore, at the end of the

sample in late 2024, sensitivity remains nearly twice as high as it was then.

Similar results, though at lower overall levels, hold for three-year expectations. Their
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sensitivity to inflation surprises peaked at 0.04, and they are also now about twice their

pre-covid values.

The second two columns report the regression of squared changes in median expectations

on (demeaned) lagged squared uncertainty. The coefficients are again highly statistically

significant. To see the effects on the predicted volatility, the right-hand panel of figure 6

plots the square roots of the fitted values from these two regressions. These values represent

conditional standard deviations for one- and three-year median inflation expectations. Those

standard deviations were both equal to about 0.07 at the beginning of 2020. They rose by a

factor of 4–6 in 2022 and at the end of 2024 remained more than twice as high as pre-covid.

Figure 6: Aggregate time-series regressions: sensitivity and conditional volatility
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Note: Panel (a) plots fitted values of the time-varying sensitivity of changes in median inflation

expectations to inflation surprises for the 1-year and 3-year horizons. Panel (b) plots the square roots of

fitted values from the regressions of squared changes in median expectations on lagged squared uncertainty.

Standard errors in the underlying regressions are Newey–West with 12 lags.

5 Conclusion

This paper studies the anchoring of inflation expectations. Starting from the observation that

the response function of expectations to news is fundamentally unobservable, its key insight is

that under the assumptions that agents are Bayesian and that they observe Gaussian signals,

the response function can be recovered from knowledge of agents’ posterior distributions.

And in fact the recovery is not even particularly complicated: the derivatives of the response
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function are simply the posterior cumulants.

Obviously the structural assumptions are strong. That is somewhat inevitable since the

goal is to measure something unobservable. Ultimately the empirical results have to speak

for themselves: does an agent’s reported uncertainty actually have any predictive power for

the sensitivity of their beliefs to news? Across a variety of measures – contemporaneous and

forward-looking, time-series and cross-sectional – the answer is broadly yes.

The results imply that the period of high inflation in 2021 and 2022 has had, so far,

lasting effects on the strength of the expectational anchor. Agents’ uncertainty about future

inflation rose as inflation did, and subsequently declined, but not nearly to the extent that

inflation itself did. By the beginning of 2025 inflation was approaching its pre-2020 levels,

but inflation uncertainty was still about three times higher. Those facts show how the results

in this paper can be used going forward. They provide a real-time quantitative measure of

how well inflation expectations are anchored. More generally, they show how to measure the

sensitivity of expectations to news in arbitrary settings.
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A Proofs

A.1 Derivation of theorems 1 and 2

Consider an arbitrary random variable x with prior distribution p. There is a signal y ∼
N (x, σ2). The posterior cumulant generating function of x given y = Y is

CGFx|Y (s) = logE [exp (sx) | y = Y ] (A.1)

= log

∫
exp (sx) p (x) exp

(
−1

2
(Y − x)2 σ−2

)
dx∫

p (x) exp
(
−1

2
(Y − x)2 σ−2

)
dx

(A.2)

= log

∫
exp (sx) p (x) exp

(
−1

2
(Y − x)2 σ−2

)
dx

− log

∫
p (x) exp

(
−1

2
(Y − x)2 σ−2

)
dx (A.3)

(note here that the CGF always exists in a neighborhood of zero, even if the prior moments

of x fail to exist, because the posterior density is scaled by exp (−x2σ−2/2), meaning that

its tails decay sufficiently fast that all of its moments exist).

Now differentiate CGFx|Y (s) with respect to s

d

ds
CGFx|Y (s) =

d

ds

[
log

∫
exp (sx) p (x) exp

(
−1

2
(Y − x)2 σ−2

)
dx

]
(A.4)

=

∫
x exp ((s+ Y σ−2)x) p (x) exp

(
−1

2
x2σ−2

)
dx∫

exp ((s+ Y σ−2)x) p (x) exp
(
−1

2
x2σ−2

)
dx

(A.5)

Evaluated at s = 0, d
ds
CGFx|Y (s) is the first posterior cumulant of x – i.e. the posterior

mean. In addition, note that all derivatives of d
ds
CGFx|Y (s) with respect to Y/σ2 are the
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same as those with respect to s. More generally, for all j + k > 1

dj

d (Y σ−2)j
dk

dsk
CGFx|Y (s) =

dj+k

dsj+k
CGFx|Y (s) (A.6)

Since dk

dsk
CGFx|Y (s) = κk (x | y = Y ), we have

dj

d (Y σ−2)j
κk (x | y = Y ) = κj+k (x | y = Y ) (A.7)

which gives a power series representation for E [x | y = Y ] around Y = a for an arbitrary a

by setting k above to 1, yielding theorem 1. Theorem 2 follows from (A.7) by setting k = 2

and j = 1.

A.2 Proof of proposition 1

First, define the expectation conditional on the realized signal being equal to the prior mean,

κ0
1,i,t ≡ E

[
π∗
t | xt

i, s
t−1
i , ŝi,t = 0

]
(A.8)

where ŝi,t = si,t − κ1,i,t−1 (A.9)

κ0
1,i,t represents the value that expectations would have taken at the end of period t –

conditional on xt
i and sti – had the surprise in the signal, ŝi,t, been equal to zero. We

can get to κ0
1,i,t either as an update from t− 1 or by using theorem 1 to go backwards from

κ1,i,t. For the latter, from (14), we have

κ0
1,i,t = κ1,i,t − κ2,i,tσ

−2
i,t ŝi,t − o (ŝi,t) (A.10)

where the o (ŝi,t) term involves higher-order powers of ŝi,t. For the forward update from t−1,

κ0
1,i,t = κ1,i,t−1 + fi,t−1 (xi,t) (A.11)

where fi,t−1 is a function representing how expectations are updated given the unobservable

component of agents’ information.1

The final issue is that we do not observe the individual-specific signals, si,t. Instead, we

can at best observe π̂i,t ≡ πt − κ1,i,t−1. Combining that with equations (A.10) and (A.11)

yields the result.

1Specifically, fi,t−1 (xi,t) = E
[
π∗
t | yt−1

i , xi,t, ŝi,t = 0
]
− E

[
π∗
t−1 | yt−1

i

]
.
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B Extensions and additional discussion

B.1 Some deviations from fully rational Bayesianism

The results here do not require that people are perfect Bayesians, at least in the usual

sense of combining Bayes’ theorem with rational expectations. Dew-Becker, Giglio and

Molavi (2026a) also discuss this point, and Molavi (2025) analyzes it in depth. In particular,

assumptions 2 and 3 do not impose any of the following:

1. That agents use the correct precision (σ2
t ) in calculating their update. They might

place too much or too little weight on their signals (e.g. as in diagnostic expectations)

2. That agents’ prior is in any sense “correct”. It might be wrong if agents have the wrong

dynamic model for inflation, they might have some strange prior based on superstition,

or they might just for some reason have started with beliefs far from the truth (e.g.

Farmer, Nakamura and Steinsson (2024)). The prior need not even be absolutely

continuous with respect to any sort of true distribution.

3. That the signals agents observe are actually Gaussian conditional on future inflation.

4. That the agents incorporate all information they receive. They could irrationally or

inefficiently ignore some information, and unreasonably privilege other sources.

5. That the agents properly weight all information they receive. For example, agents

might receive many Gaussian signals, which can be combined into a single value and

used for updating. It is possible that they do that combination incorrectly.

6. That agents all receive the same information or share priors. For example, their beliefs

could be affected by different life histories, as in Malmendier and Nagel (2016).

What is important here is not actually that agents are true Bayesians. Theorem 1 simply

requires that they use an updating rule that has the same algebraic structure as Bayes’

rule. Obviously people might not actually do that, in which case the model’s predictions

should fail in the data. The claim is not that every possible belief updating rule fits into the

structure of theorem 1, and in fact the goal of the next sections of the paper is to evaluate

whether theorem 1 has any descriptive power.
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B.2 Issues with two-stage least squares

The usual approach to instrumental variables estimation is two-stage least squares. This

section explains why that method is not well suited to this paper’s setting.

Since the independent variable in the regression is κ2,i,tπ̂i,t, the natural instrument is

zi,tπ̂i,t. The 2SLS estimated coefficient is then

β̂
2SLS

= Ê

 z̃i,tπ̂i,tκ̃2,i,tπ̂i,t

Ê
[
z̃i,tπ̂i,tκ̃2,i,tπ̂i,t

]σ−2
i,t

+
Ê
[
z̃i,tπ̂i,tε̃i,t

]
Ê
[
z̃i,tπ̂i,tκ̃2,i,tπ̂i,t

]
where for any variable x, x̃ represents the demeaned value. That equation leads to two

concerns. The first is that β̂
2SLS

, even in the case where E
[
z̃i,tπ̂i,tεi,t

]
= 0, does not in

general estimate the mean of σ−2
i,t . Instead, as usual for 2SLS, it estimates a type of local

average treatment effect. Since we have a continuous instrument, we get the standard result

that the estimated coefficient is a weighted average of the σ−2
i,t . That average will be tilted

towards the observations for which z̃i,tπ̂i,tκ̃2,i,tπ̂i,t is relatively high, which is similar to the

bias in OLS above.

More troublingly, though, without strong additional assumptions, there is no reason to

necessarily think that the weights
˜zi,tπ̂i,t

˜κ2,i,tπ̂i,t

Ê
[
˜zi,tπ̂i,t

˜κ2,i,tπ̂i,t

] are all positive. They will only be uniformly

positive if it is the case that, observation-by-observation, whenever κ̃2,i,tπ̂i,t ≷ 0, we also have

z̃i,tπ̂i,t ≷ 0 or z̃i,tπ̂i,t ≶ 0 (i.e. they always have identical signs or always have opposite signs),

which is obviously a strong restriction. Without that, nothing ensures that the estimated

coefficient is actually an average of the values of σ−2
i,t in the usual sense.

Finally, there is also good reason to be concerned that the first stage might be weak here,

because the instrument, zi,t, is multiplied by π̂i,t. In particular, the economically natural

first stage is a regression of κ2,i,t on zi,t. Section B.2 gives an informal argument that the F -

statistic in the weighted regression should, on average, be smaller than that in the unweighted

regression by a factor equal to the kurtosis of π̂i,t. If π̂i,t is normally distributed, for example,

then its kurtosis is equal to 3 (which is close to what we observe in the data). The first-stage

F-statistic in the weighted regression in that case will be smaller by a factor of 3 than in

the unweighted regression, which can be expected to potentially lead to a weak-instrument

problem.

As Wooldridge (2015) discusses, it is not in general valid to estimate a first stage

regression of κ2 on z and then insert the fitted value as an interaction in the second stage.

But alternative instrumental variables methods do allow us to use the uninteracted first
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stage.

B.3 Estimation example

This section presents a simple example with distributions for the various terms in the analysis

for which OLS estimates of the relationship between information sensitivity and uncertainty

are biased towards zero, while a control function approach can (in population) perfectly

recover the structural parameters. The example also helps motivate the inclusion of the

inverse of the estimated control function in the empirical specification. In this section we

ignore the time component of the model and simply index observations by i.

Suppose there is a random variable

si ∼ U (δ, 1) (A.12)

si will represent an idiosyncratic component of signal precision. In addition, π̂i and εi have

arbitrary mean-zero distributions, and si, π̂i, are εi are jointly independent. Finally, there

is an instrument zi, which can be though of as tenure, though we leave it unstructured here.

The scale of the various variables will be essentially irrelevant. The only functional form

that will matter is that for si, which will allow for some closed-form calculations.

For uncertainty and signal precision we assume

σ−2
i = a+ bsi (A.13)

κ2,i = s
−1/2
i + zi (A.14)

Finally, we assume that the theoretical structure from the paper holds in the sense that

∆κ1,i = σ−2
i κ2,iπ̂i + εi (A.15)

B.3.1 Motivation

It is worth briefly motivating the functional forms above, specifically for σ−2
i and κ2,i.

Again, si is meant to capture cross-sectional variation in signal precision or, equivalently,

the attention agents pay to inflation. Using results from Dew-Becker et al. (2026b), the

steady-state level of uncertainty given signal precision of s is, roughly,

κSS
2 =

E
[
d (π∗

t )
2]1/2

s1/2
(A.16)
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where E
[
d (π∗

t )
2] is the expected change in squared change in trend inflation. The equation

comes from solving the usual Riccati equation that appears in filtering. That motivates the

inverse relationship between κ2,i and si. zi represents the variation in uncertainty due to

tenure.

Certainly this example is stylized. It does not formalize the idea that zi should be related

to σ−2
i across agents, but not within agents over time.

B.3.2 Control function regressions

The assumption in the main text is that κ2,i = G (zi, π̂i, vi). Here, κ2,i has such a form. G

is linear, π̂i does not matter, and, most importantly, the control function we will recover is

vi = s
−1/2
i .

The identification conditions here from assumption 7 are

E
[
σ−2
i | κ2,i, vi, π̂i

]
= E

[
σ−2
i | vi, π̂i

]
E [εi | κ2,i, vi, π̂i] = E [εi | vi, π̂i]

The first condition holds since σ−2
i is a function of vi alone. The second holds trivially since

εi is independent of all other variables.

Now consider a regression of ∆κ1,i on [κ2,iπ̂i, 1]⊗
[
1, v−2

i

]
, similar to what is in the text

(the text includes more regressors, but they will be irrelevant here). Note that we have,

combining what is above,

∆κ1,i = aκ2,iπ̂i + bsiκ2,iπ̂i + εi (A.17)

The population coefficient on κ2,iπ̂i recovers a, the coefficient on v−2
i κ2,iπ̂i recovers b, and

the estimates combined yield σ−2
i (and hence also its cross-sectional mean). That is, the

control function regression is correctly specified.

We can also consider a regression of ∆κ2
1,i. We have

E
[
∆κ2

1,i | κ2,i, vi
]

= E
[
σ−4
i κ2

2,iπ̂
2
i + ε2i + 2εiσ

−2
i κ2,iπ̂i | κ2,i, vi

]
(A.18)

= E
[
σ−4
i κ2

2,i | κ2,i, vi
]
var (π̂i) + var (εi) (A.19)

= κ2
2,i

(
a2 + b2s2i + 2absi

)
var (π̂i) + var (εi) (A.20)

So if the regressors are
[
κ2
2,i, 1

]
⊗
[
1, v−2

i , v−4
i

]
, the regression is correctly specified and we

can recover E
[
σ−4
i

]
, which is the mean response of expected squared changes in beliefs to

changes in uncertainty.
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Table A.1: First stage regressions, 2SLS approach

(a) First stage, 1 year inflation

(1) (2)
Dep var: Unc. × Surp. Unc. × Surp.
Tenure × Surpr. -0.325*** -0.183***

(-6.17) (-3.91)
Infl. Surpr. 13.817*** 12.228***

(18.49) (24.32)
Type of infl. surpr. Point Mean
F-statistic 188.379 319.883
R2 0.217 0.229
Observations 103,888 93,460

(b) First stage, 3 year inflation

(1) (2)
Dep var: Unc. × Surp. Unc. × Surp.
Tenure × Surpr. -0.266*** -0.226***

(-4.34) (-4.48)
Infl. Surpr. 13.748*** 12.631***

(19.14) (28.32)
Type of infl. surpr. Point Mean
F-statistic 221.682 460.780
R2 0.215 0.231
Observations 101,438 92,765

Note: The table (with panel (a) focusing on 1-year inflation and panel (b) on 3-year inflation) reports
results of regressing the interaction of uncertainty and surprise on the interaction of tenure and surprise,
as well as inflation surprise, corresponding to the first stage of the 2SLS approach. Robust t-statistics
allowing for two-way clustering by respondent and time are reported in parentheses. Significance: *
p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A.2: Reduced Form Regression: Robustness

(a) 1 year inflation

(1) (2) (3) (4) (5) (6)

Dep var: ∆κ1 ∆κ1 ∆κ1 ∆κ1 ∆κ1 ∆κ1

Tenure × Infl. Surpr. -0.0061*** -0.0025*** -0.0056*** -0.0027*** -0.0064*** -0.0031***

(-8.89) (-3.36) (-9.34) (-4.23) (-9.73) (-4.12)

Infl. Surpr. 0.1510*** 0.0488*** 0.1419*** 0.0555*** 0.1650*** 0.0570***

(16.86) (7.64) (18.91) (8.70) (23.90) (8.93)

CPI or PCE CPI CPI PCE PCE PCE PCE

Headline or core C C H H C C

Point or Mean P M P M P M

R2 0.032 0.003 0.034 0.004 0.036 0.003

Observations 103,888 93,460 103,888 93,460 103,888 93,460

(b) 3 year inflation

(1) (2) (3) (4) (5) (6)

Dep var: ∆κ1 ∆κ1 ∆κ1 ∆κ1 ∆κ1 ∆κ1

Tenure × Infl. Surpr. -0.0039*** -0.0021*** -0.0031*** -0.0014** -0.0040*** -0.0024***

(-5.35) (-2.70) (-4.71) (-2.00) (-5.27) (-2.97)

Infl. Surpr. 0.0887*** 0.0383*** 0.0800*** 0.0356*** 0.0964*** 0.0441***

(11.73) (4.71) (11.50) (5.41) (14.00) (5.83)

CPI or PCE CPI CPI PCE PCE PCE PCE

Headline or core C C H H C C

Point or Mean P M P M P M

R2 0.009 0.001 0.010 0.002 0.011 0.002

Observations 101,438 92,765 101,438 92,765 101,438 92,765

Note: Robustness table for the reduced form regressions reported in table 2. Across columns,
inflation surprises vary along three dimensions: (i) CPI vs. PCE inflation, (ii) headline vs. core,
and (iii) point estimate vs. mean of the belief distribution. Robust t-statistics allowing for
clustering by respondent and time are reported in parentheses. Significance: * p < 0.10, **
p < 0.05, *** p < 0.01.
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Table A.3: Reduced Form Regression: Robustness, controlling for tenure

(a) 1 year inflation

(1) (2) (3) (4) (5) (6)

Dep var: ∆κ1 ∆κ1 ∆κ1 ∆κ1 ∆κ1 ∆κ1

Tenure × Infl. Surpr. -0.0053*** -0.0021*** -0.0049*** -0.0023*** -0.0059*** -0.0027***

(-6.89) (-2.94) (-6.94) (-3.50) (-7.36) (-3.48)

Infl. Surpr. 0.1456*** 0.0456*** 0.1373*** 0.0527*** 0.1617*** 0.0538***

(15.42) (7.44) (16.66) (7.87) (20.56) (8.50)

Tenure 0.0067*** 0.0051*** 0.0055** 0.0038** 0.0033 0.0035**

(3.20) (3.37) (2.55) (2.24) (1.55) (2.27)

CPI or PCE CPI CPI PCE PCE PCE PCE

Headline or core C C H H C C

Point or Mean P M P M P M

R2 0.032 0.003 0.034 0.004 0.036 0.003

Observations 103,888 93,460 103,888 93,460 103,888 93,460

(b) 3 year inflation

(1) (2) (3) (4) (5) (6)

Dep var: ∆κ1 ∆κ1 ∆κ1 ∆κ1 ∆κ1 ∆κ1

Tenure × Infl. Surpr. -0.0033*** -0.0020** -0.0024*** -0.0012 -0.0033*** -0.0023***

(-4.06) (-2.46) (-3.06) (-1.64) (-3.67) (-2.73)

Infl. Surpr. 0.0838*** 0.0372*** 0.0745*** 0.0341*** 0.0918*** 0.0435***

(10.67) (4.49) (9.97) (5.01) (11.90) (5.52)

Tenure 0.0062*** 0.0019 0.0065*** 0.0020 0.0046** 0.0007

(3.18) (1.10) (3.11) (1.13) (2.16) (0.41)

CPI or PCE CPI CPI PCE PCE PCE PCE

Headline or core C C H H C C

Point or Mean P M P M P M

R2 0.009 0.001 0.010 0.002 0.011 0.002

Observations 101,438 92,765 101,438 92,765 101,438 92,765

Note: Same as table A.2, but adding tenure as control.
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Table A.4: Second Stage Regression: Coefficients

1 year inflation 3 year inflation

(1) (2) (3) (4)

Unc. × Infl. Surpr. 0.0230∗∗∗ 0.0114∗∗∗ 0.0120∗∗∗ 0.0032

(6.84) (3.44) (3.72) (1.23)

Unc. × vi,t × Infl. Surpr. 0.0000160∗∗∗ 0.0000075∗∗ 0.0000166∗∗∗ 0.0000110∗∗∗

(4.49) (2.29) (5.75) (3.09)

Unc. × Infl. Surpr.2 0.0000411 −0.0000025 0.0000212 −0.0000076

(1.60) (−0.12) (1.08) (−0.36)

Infl. Surpr. −0.0804∗∗∗ −0.0667∗∗ −0.0458∗∗ −0.0105

(−3.60) (−2.39) (−1.99) (−0.46)

Infl. Surpr.2 −0.0017 0.0007 −0.0011 0.0004

(−1.18) (0.82) (−1.08) (0.61)

vi,t× Infl. Surpr. −0.0247∗∗∗ −0.0128∗∗∗ −0.0135∗∗∗ −0.0047∗

(−7.32) (−3.90) (−4.15) (−1.76)

vi,t 0.0069∗∗∗ 0.0033∗∗∗ 0.0057∗∗∗ 0.0031∗∗∗

(6.98) (5.51) (7.84) (5.98)

Constant 0.0921∗∗∗ 0.0110 0.0424∗∗∗ 0.0028

(4.08) (0.94) (2.94) (0.27)

Type of infl. surpr. Point Mean Point Mean

Observations 103,888 93,460 101,438 92,765

Note: Table reports all the coefficients of the regression in table 3.
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Table A.5: Second Stage Regression: Robustness

(a) 1-Year Inflation

Dep. var.: ∆κ1,i,t

(1) (2) (3) (4) (5) (6)

Unc. × Infl. Surpr., avg marginal effect 0.0287∗∗∗ 0.0135∗∗∗ 0.0266∗∗∗ 0.0144∗∗∗ 0.0294∗∗∗ 0.0158∗∗∗

(6.81) (3.11) (7.14) (3.71) (7.05) (3.61)

vi,t × Infl. Surpr., avg marginal effect −0.0317∗∗∗ −0.0157∗∗∗ −0.0289∗∗∗ −0.0164∗∗∗ −0.0327∗∗∗ −0.0184∗∗∗

(−7.48) (−3.65) (−7.74) (−4.28) (−7.80) (−4.27)

Other controls Y Y Y Y Y Y

CPI or PCE CPI CPI PCE PCE PCE PCE

Headline or core C C H H C C

Point or Mean P M P M P M

Observations 103,888 93,460 103,888 93,460 103,888 93,460

(b) 3-Year Inflation

Dep. var.: ∆κ1,i,t

(1) (2) (3) (4) (5) (6)

Unc. × Infl. Surpr., avg marginal effect 0.0183∗∗∗ 0.0092∗∗ 0.0145∗∗∗ 0.0059∗ 0.0181∗∗∗ 0.0099∗∗∗

(4.43) (2.53) (3.95) (1.83) (4.34) (2.62)

vi,t × Infl. Surpr., avg marginal effect −0.0205∗∗∗ −0.0115∗∗∗ −0.0164∗∗∗ −0.0081∗∗ −0.0205∗∗∗ −0.0126∗∗∗

(−4.95) (−3.11) (−4.46) (−2.48) (−4.91) (−3.34)

Other controls Y Y Y Y Y Y

CPI or PCE CPI CPI PCE PCE PCE PCE

Headline or core C C H H C C

Point or Mean P M P M P M

Observations 101,438 92,765 101,438 92,765 101,438 92,765

Note: Same as table 3, but varying the construction of the inflation surprise along three dimensions:
(i) CPI vs. PCE inflation, (ii) headline vs. core inflation, (iii) mean of the belief distribution vs.
respondents’ point estimates.

Table A.6: Second Stage Regression: alternative dependent variable

1 year inflation 3 year inflation

(1) (2) (3) (4)

Unc. × Infl. Surpr., avg marginal effect 0.0516∗∗ 0.0280∗∗∗ 0.0318∗ 0.0374∗∗∗

(2.26) (5.39) (1.94) (5.12)

vi,t × Infl. Surpr., avg marginal effect −0.0523∗∗ −0.0308∗∗∗ −0.0337∗∗ −0.0400∗∗∗

(−2.28) (−5.75) (−2.06) (−5.34)

Other controls Y Y Y Y

Type of infl. surpr. Point Mean Point Mean

Observations 80,822 99,984 78,356 97,263

Note: Analogous to table 3, but using the respondents’ point estimate of inflation to construct the
dependent variable.
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Table A.7: Second Stage Regression: Additional Controls

1 year inflation 3 year inflation

(1) (2) (3) (4)

Unc. × Infl. Surpr., avg marginal effect 0.0157∗∗∗ 0.0064∗∗ 0.0058∗ −0.0030

(4.50) (1.97) (1.80) (−1.09)

vi,t × Infl. Surpr., avg marginal effect −0.0314∗∗∗ −0.0154 −0.0148∗ −0.0008

(−4.00) (−1.49) (−1.87) (−0.09)

Other controls Y Y Y Y

Type of infl. surpr. Point Mean Point Mean

Observations 103,888 93,460 101,438 92,765

Note: Same as table 3, but with a larger set of controls: the Kronecker product of (inflation surprise;
uncertainty×inflation surprise) with (a constant, the control function component (vi,t), the inflation
surprise, and vinvi,t ), where vinvi,t is the inverse of (vi,t −min(vi,t) + 10).
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Table A.8: Second Stage Regression: 2SLS Estimates (Robustness Across Inflation Measures)

(a) 1-Year Inflation

Dep. var.: ∆κ1,i,t

(1) (2) (3) (4) (5) (6) (7) (8)

Unc. × Infl. Surpr. 0.0143∗∗∗ 0.0116∗∗∗ 0.0214∗∗∗ 0.0160∗ 0.0199∗∗∗ 0.0155∗∗∗ 0.0282∗∗∗ 0.0206∗

(4.96) (2.76) (3.58) (1.83) (3.97) (2.59) (2.85) (1.89)

Infl. Surpr. −0.0866∗∗∗ −0.0975∗∗ −0.1874∗∗ −0.1661 −0.1607∗∗ −0.1409∗∗ −0.3016∗∗ −0.2212

(−2.73) (−2.07) (−2.28) (−1.50) (−2.43) (−1.99) (−2.02) (−1.58)

CPI or PCE CPI CPI CPI CPI PCE PCE PCE PCE

Headline or core H H C C H H C C

Point or Mean P M P M P M P M

Observations 103,888 93,460 103,888 93,460 103,888 93,460 103,888 93,460

(b) 3-Year Inflation

Dep. var.: ∆κ1,i,t

(1) (2) (3) (4) (5) (6) (7) (8)

Unc. × Infl. Surpr. 0.0094∗∗∗ 0.0032 0.0165∗∗ 0.0084∗∗ 0.0142∗∗ 0.0065 0.0216∗ 0.0105∗∗

(2.81) (1.14) (2.38) (2.04) (2.33) (1.64) (1.88) (2.17)

Infl. Surpr. −0.0687∗ −0.0166 −0.1766∗ −0.0785 −0.1363 −0.0494 −0.2678 −0.1019∗

(−1.74) (−0.54) (−1.77) (−1.60) (−1.63) (−1.09) (−1.48) (−1.72)

CPI or PCE CPI CPI CPI CPI PCE PCE PCE PCE

Headline or core H H C C H H C C

Point or Mean P M P M P M P M

Observations 101,438 92,765 101,438 92,765 101,438 92,765 101,438 92,765

Note: This table reports two-stage least squares (2SLS) estimates of the second-stage regression of
∆κ1,i,t (measured based on the bin mean) on the interaction of uncertainty and inflation surprises,
Unc.×π̂i,t, and on the inflation surprise π̂i,t. The endogenous regressor Unc.×π̂i,t is instrumented using
tenure interacted with the inflation surprise, i.e., Tenurei,t× π̂i,t, with the inflation surprise included as
an exogenous regressor. Panel (a) uses 1-year expectations, panel (b) uses 3-year expectations. Columns
vary the construction of the inflation surprise along three dimensions: (i) CPI vs. PCE inflation, (ii)
headline vs. core inflation, and (iii) point forecast vs. lagged bin mean. Standard errors are two-way
clustered by respondent and time; t-statistics are reported in parentheses. Significance: * p < 0.10, **
p < 0.05, *** p < 0.01.
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