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Abstract

A New-Keynesian model in which households have Epstein—Zin preferences with time-varying

risk aversion and the central bank has a time-varying inflation target can match the dynam-

ics of nominal bond prices in the US economy well. The model generates a large steady-state

term spread and its fitting errors for bond yields are comparable to those obtained from a non-

structural three-factor model, and one third smaller than in models with a constant inflation

target or risk aversion. Including data on interest rates has large effects on variance decompo-

sitions, making investment technology shocks much less important than found in other recent

papers.

1 Introduction

Non-structural and atheoretical models are widely used in both macroeconomics and the study

of the term structure of interest rates. Recently, Smets and Wouters (2003) have shown that a

structural New Keynesian model can match the dynamics of the macroeconomy as well as or better

than a benchmark non-structural VAR. This paper extends that work by showing that a suitably

augmented version of their model can also match the dynamics of the term structure of interest

rates nearly as well as a standard non-structural model. In addition, including information from

the term structure has substantial effects on the estimated sources of variation in the real economy.
∗I appreciate helpful comments from Jason Beeler, John Campbell, Emmanuel Farhi, Andrea Tambalotti, and

seminar participants at the Federal Reserve Bank of Chicago.
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Whereas recent estimates of business cycle models have found shocks to investment productivity

to be a dominant source of variation (Justiniano, Primiceri, and Tambalotti, 2010), I find that

including data on long-term interest rates substantially weakens that conclusion. This paper thus

not only shows that properly constructed DSGE models can match the behavior of asset prices,

but that in fact data on asset prices is key in drawing proper conclusions about the behavior of the

economy from these models.

Rudebusch and Swanson (2008) show that standard DSGE models are unable to generate the

upward-sloping nominal term structure that we observe empirically. In a subsequent paper, Rude-

busch and Swanson (2012) show that a calibrated model augmented with a time-varying inflation

target (similar to Bekaert, Cho, and Moreno, 2010) can generate a realistically large term pre-

mium.1 This paper extends that work in two directions. First, I fully estimate a medium-scale

DSGE model, showing that it not only matches the steady-state properties of bond markets, but

also fits observed dynamics. Second, I allow for time-variation in the term premium, helping match

findings from the bond pricing literature that returns on long term bonds are predictable (e.g.

Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005).

The production side of the model I analyze is similar to other recent medium-scale DSGE

models (e.g. Smets and Wouters, 2003). The central feature of the model estimated in this paper

that differentiates it from the remainder of the literature is that it explicitly allows for first-order

variation in risk premia over time driven by time-varying risk aversion as in Melino and Yang

(2003) and Dew-Becker (2011a). While shifts in risk premia coming from various sources have

been extensively studied in calibrated models, this paper is novel for estimating a full model of

the economy with time-varying risk premia (i.e. time-varying expected excess returns on risky

assets).2 Shifts in risk premia are a central feature of asset markets (Cochrane, 2011), and there is

strong reduced-form evidence that shifts in risk premia are important drivers of the business cycle

(Gilchrist and Zakrajsek, 2012). This paper represents a first step towards estimating a full model

of the economy that allows for time-varying risk premia.

Bekaert, Cho, and Moreno (2010) show that a log-linearized macro model naturally also delivers

1See also van Binsbergen et al. (2012).
2For calibrated models with time-varying risk premia, see, for example, Campanale, Castro, and Clementi (2010);

Dew-Becker (2012); Gourio (2012, 2013); Guvenen (2009); Melino and Yang (2003); and Rudebusch and Swanson
(2012), among others.
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closed-form expressions for bond prices. Their approximation method, however, is not able to

describe risk premia, and even if it could, the model assumes that risk premia are constant (because

households have power utility and the fundamental shocks have constant variances). This paper

builds on their work by using an approximation method that allows for positive and time-varying

risk premia. In fact, I show that Epstein—Zin preferences with time-varying risk aversion naturally

generate the essentially affi ne stochastic discount factor of Duffee (2002) that is widely studied in

the bond pricing literature. With that result, the state variables of the economy follow a VAR and

all bond prices are a linear function of the states, even when risk premia vary over time. The model

is then naturally estimated using Kalman filter and Bayesian methods.

The estimated model fits interest rates with errors that are similar to those generated by a

non-structural three-factor model. The errors in fitting annualized yields on bonds with maturities

ranging from 1 quarter to 20 years have a standard deviation of 17 basis points, compared to a

simple non-structural model that has fitting errors of 6—18 basis points. The steady-state term

spread in the model represents the average risk premium on long-term bonds. It is estimated to be

191 basis points, similar in magnitude to the 207-basis-point average observed in the sample.

To understand why that risk premium would be large, we first need to understand what drives

the variance of the pricing kernel. When the representative household has Epstein—Zin preferences

with a coeffi cient of relative risk aversion that is substantially larger than the inverse of its EIS

(preferring an early resolution of uncertainty), state prices are almost entirely driven by innovations

to the household’s lifetime utility, i.e. the value placed on its entire future stream of consumption

and leisure. With a high EIS, transitory changes in consumption have a small effect on lifetime

utility. Permanent technology shocks, though, will have large effects. Shifts in risk aversion also

affect lifetime utility because they affect how much the household penalizes future uncertainty.

Even though there are nine shocks in the economy, only two of them turn out to be relevant for

the pricing kernel– labor-neutral technology and risk aversion. Since all of the other shocks (e.g.

monetary policy, markups, government spending) are purely transitory, they have trivial effects on

permanent income and welfare, and thus they do not have a strong effect on state prices.

Following a positive innovation to the level of technology, nominal interest rates are estimated

to fall, making long-term bonds risky and inducing a positive slope in the term structure. This

result is common to a variety of New-Keynesian models, e.g. JPT, Smets and Wouters (2003),
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and Christiano, Trabandt, and Walentin (2011). In this paper, beyond the usual New-Keynesian

effect that works in many papers, the central bank’s inflation target also falls following positive

technology shocks. Intuitively, a positive supply shock lowers inflationary pressure, which the

central bank takes as an opportunity to drive inflation lower for an extended period. The fact that

the negative correlation between technology shocks and interest rates is obtained in numerous other

models that assume a constant inflation target suggests that this is in fact a robust feature of the

data. The effect is compounded here by the shifts in the inflation target, which I find are necessary

for being able to obtain a realistically large average term spread.

Variation in risk aversion also makes an important contribution to the model’s ability to the term

structure of interest rates, though. Standard statistical tests easily reject a model with constant risk

aversion in favor of one with time-varying risk aversion. The pricing errors for bonds are smaller

by a third when risk aversion is allowed to vary over time. Movements in risk aversion account for

a large fraction of the variance of the term spread, particularly outside of recessions.

While the variance decompositions imply that the pricing kernel is driven entirely by the labor-

neutral technology and risk aversion shocks, I find that those two shocks have only minor effects

on the dynamics of the real economy in the short-run. Risk aversion explains less than 5 percent

and the neutral technology shock less than 10 percent of the variance of output, consumption,

investment, and hours worked at business-cycle frequencies. The variance decompositions also

differ substantially from the results found by JPT. Whereas JPT find that investment technology

shocks are an important driver of the business cycle, I find that they explain only 20 percent of the

variance of investment growth and even less of the variance of other variables.

When bond prices are excluded from the estimation, the investment shocks are estimated to be

much larger, but they have very large effects on long-term interest rates. Long-term bond prices

encode information about expectations, and implicitly impulse response functions. Since short-

term interest rates are a key driving force in business cycle models, it is not surprising that adding

information that helps pin down expectations can have large and important effects on inferences.

In addition to matching the behavior of the term structure, the estimated parameters imply

reasonable behavior for equity prices. The steady-state annualized Hansen—Jagannathan bound is

estimated to be 0.55, which is consistent with the observed Sharpe ratio for the stock market in the

data sample, even though data on equity returns is not included in the estimation. Furthermore,
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the estimated degree of variation in risk aversion is similar to (though somewhat higher than) the

value used in Dew-Becker (2012a), who calibrates a general-equilibrium model that can match the

both the average Sharpe ratio on equities and also empirical stock return forecasting regressions.

This paper is related to a small but growing literature on bond pricing in production economies.

Bekaert, Cho, and Moreno (2010) and Doh (2011) estimate New-Keynesian macro models, but they

do not focus on the size and volatility of the term premium, whereas that is the feature of the term

structure that this paper concentrates on. Andreasen (2012) estimates a model of the UK economy

with a focus on term premia, but with roughly constant risk aversion and fixed volatility, which

makes it diffi cult to generate the large movements in risk premia for both bonds and other assets

that are generated here. Rudebusch and Swanson (2012) generate a large and volatile term premium

in a calibrated model. This paper moves beyond them by considering a substantially more complex

model and showing that it can be dynamically estimated through standard Bayesian methods using

the Kalman filter.

The remainder of the paper is organized as follows. Section 2 describes household preferences

and derives the pricing kernel. Section 3 describes the remainder of the economy including the

production process, price setting, and monetary and fiscal policy.

Next, section 4 explains how the model is solved. If we used perturbation methods, a third-

order approximation would be necessary to capture time-variation in risk premia. The estimation

of the model turns out to be suffi ciently diffi cult, however (due to numerous local extrema in the

likelihood function, a common feature of models of the term structure), that the use of a nonlinear

filter for calculating the model’s marginal likelihood is infeasible. I therefore use the essentially

affi ne solution method described in Dew-Becker (2011b). The method approximates the pricing

kernel separately from the remainder of the model, allowing it to take the essentially affi ne form with

a time-varying price of risk described in Duffee (2002). The essentially affi ne method is equivalent

to a first-order perturbation local to the non-stochastic steady-state, but it includes corrections for

volatility that allow it to substantially outperform first-order perturbation in stochastic simulations.

The key feature of the essentially affi ne method is that risk premia may vary over time and affect

real variables, not just asset prices.

Section 5 describes the Bayesian methods used to estimate the model. Sections 6 and 7 examine

the implications of the estimates for asset prices and the dynamics of the real economy, respectively.

5



Finally, section 8 concludes.

2 Household preferences

2.1 Objective function and budget constraint

I assume the household has recursive preferences over consumption and leisure

Vt =

{
(1− β)U

(
Dt, Ct, C̄t−1, Nt, Zt

)
+ β

(
EtV

1−αt
t+1

) 1−ρ
1−αt

} 1
1−ρ

(1)

where Dt is the household’s cash holdings Ct is consumption, C̄t is aggregate consumption, Nt is

the number of hours worked outside the home, and Et denotes the expectation operator conditional

on information available at date t. The term C̄t−1 allows the period utility function to potentially

include external habit formation. The level of technology, Zt, may also affect household utility in

order to ensure balanced growth (as in Rudebusch and Swanson, 2010).

The household’s coeffi cient of relative risk aversion, αt, is allowed to vary over time. Dew-Becker

(2011a) motivates variation in αt by considering adding a time-varying benchmark to the standard

Epstein—Zin certainty equivalent, Et (Vt+1 −Ht)
1−α. When Vt+1 is close to Ht, the household’s

effective risk aversion over shocks to Vt+1 rises. The formulation (1) has the advantage that it is

log-linear and we do not have to worry about the possibility that Vt+1 falls below Ht. In Dew-

Becker (2011a), movements in αt are connected to movements in the household’s welfare. I loosen

that constraint here and allow for independent shocks to risk aversion (equivalently, shocks to the

habit). Melino and Yang (2003) study a similar specification, but without an explicit habit. Unlike

an intertemporal preference shock, since αt directly affects the level of welfare, shocks to αt will be

per se priced —that is, even if they have no effect on consumption or leisure, they will still affect

the pricing kernel through their impact on the level of welfare.

The household’s budget constraint is

PtCt + PtIt +Ht +Dt = (1 + it)Ht−1 +WtNt + Πt +Rk,tutKt−1 − Pta (ut)Kt−1 +Dt−1 (2)

where Pt is the price of the consumption good, It is the expenditure on physical investment, Ht is
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holdings of one-period nominal bonds, it is the nominally riskless interest rate, Wt is the wage, and

Πt represents profits and other lump-sum transfers paid to the household. Rk,t is the rental rate

on capital and Kt−1 the quantity of capital the household owns. The dynamics of investment and

capital accumulation will be discussed in more detail below. For now it is suffi cient to simply note

that the household rents out its labor and capital and allocates the proceeds between consumption

and saving.

I study the so-called cashless economy described in Woodford (2003). The monetary authority

is able to control the interest rate because money enters the household’s utility function, but the

effect of money on total utility is suffi ciently small that we can ignore it when writing Vt (i.e. we

take the limit where the relative importance of money goes to zero). I do not discuss money any

further and from now on drop Dt from the household’s budget constraint and utility function.

The period utility function, U
(
Ct, C̄t−1, Nt, Zt

)
is motivated as a reduced form of a model of

household production as in Rudebusch and Swanson (2010). Suppose households have power utility

over both market goods and goods produced at home,

Ut =

(
Cηt C̄

1−η
t−1

)1−ρ

1− ρ + ϕ1

C1−ρ
H,t

1− ρ (3)

where CH,t is consumption of the home good. Households do not derive utility directly from leisure,

but rather from what they are able to produce in their non-market-work time (as in Campbell and

Ludvigson, 2001). The home production function is ZtN
αH
H,t , for hours worked at home NH,t and

a coeffi cient 0 < αH < 1. The level of labor-neutral technology in the economy is assumed to be

equal (up to a constant of proportionality) in the home and market production sectors.3

The period utility function can then be written as

Ut ≡

(
Cηt C̄

1−η
t−1

)1−ρ

1− ρ + Z1−ρ
t ϕ1

(
H̄ −Nt

)αH(1−ρ)

1− ρ (4)

3Note that in the household sector, an exogenous shift in Zt, all else equal, raises output one-for-one, whereas
below we will see that in the market sector it will raise output less than proportionally. The reason is that in the
market sector, an increase in Zt also leads to an identical increase in the size of the capital stock. So, ultimately, the
marginal product of labor in both sectors is proportional to Zt.
One way to rationalize this slight elision would be if the household accumulates durable goods at home that aid

household production. That feature of the model is left out for simplicity.
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H̄ denotes the maximum number of hours that the household can work, either at home or in the

market, and Nt is market labor. If sleep is part of home production, then H̄ might equal 8760 hours

for annual data. More generally, though, H̄ might be smaller. As a practical matter, H̄ affects both

the elasticity of utility with respect to market labor and the Frisch elasticity. The three parameters

ϕ1, H̄, and αH jointly determine three primary features of household behavior: hours worked, the

Frisch elasticity, and the elasticity of utility with respect to market labor.

The first term in (4) gives the utility that comes from consumption. The household has power

utility over a Cobb—Douglas aggregate of current and (aggregate) past consumption. This formu-

lation differs from the standard recent implementation in the macro literature in that I assume

a multiplicative instead of additive habit. Campbell and Cochrane (1999) show that an additive

habit can induce time-varying risk aversion, whereas the multiplicative habit will have no affect

on risk aversion; the multiplicative habit here ensures that variation in risk preferences is driven

purely by αt.4

The key feature of the usual additive habit is simply that the marginal utility of current con-

sumption is increasing in last period’s consumption, which induces consumers to try to smooth

consumption growth, as observed in the data. To obtain that result in this setting (assuming

0 < η < 1), we need ρ < 1.

2.2 The stochastic discount factor

The marginal rate of substitution of consumption between neighboring dates is

Λt+1 ≡
∂Vt/∂Ct+1

∂Vt/∂Ct
= β

UC,t+1

UC,t

V ρ−αt
t+1(

EtV
1−αt
t+1

) ρ−αt
1−αt

(5)

where UC,t ≡ ∂Ut/∂Ct is the marginal (period) utility of consumption. Mt+1 denotes the SDF

between dates t and t+ 1.

In the case where Ut = C1−ρ
t , Λt+1 reduces to the usual formula for the SDF when utility depends

only on consumption (e.g. Epstein and Zin, 1991). If the (period) marginal utility of consumption

depends on labor, then the SDF will be distorted in the usual ways through UC,t+1
UC,t

. Even if UC

4Jermann (1998) and Boldrin, Christiano, and Fisher (2001) find that models with additive habits have substantial
diffi culties in matching the dynamics of interest rates. Interest rates in their models are too volatile by an order of
magnitude.
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only depends on consumption, though (i.e. if period utility is separable between consumption and

leisure), variation in labor will still affect the SDF through Vt+1: with recursive preferences, it is

not generally possible to separate labor supply decisions from asset prices, unlike the case where

preferences are separable between consumption and labor and over time.

2.2.1 Substituting in an asset return

Now consider an asset that pays UtU−1
C,t as its dividend in each period. In the usual analysis

of Epstein—Zin preferences, one substitutes the return on an asset that pays consumption as its

dividend into the SDF. In the present case, dividing period utility, Ut, by the marginal utility of

consumption intuitively converts Ut from utility units into consumption units.

We now derive the price of a claim to UtU−1
C,t . Denote the cum-dividend price of this asset as

WU,t. The appendix confirms that

WU,t = V 1−ρ
t U−1

C,t/ (1− β) (6)

and that we can substitute the return on this asset into the SDF to obtain

Λt+1 = β
1−αt
1−ρ

(
UC,t+1

UC,t

) 1−αt
1−ρ

R
ρ−αt
1−ρ
U,t+1 (7)

where RU,t+1 ≡ WU,t+1

WU,t − UtU−1
C,t

(8)

The expression for the SDF in terms of an asset return is useful for two reasons. First, it helps

show how the SDF is changed from the usual form when labor supply is included. For a general

period utility function Ut, instead of the standard setup where only consumption matters, we see

that the relevant return now depends on the entire evolution of future utility (scaled by marginal

utility to convert it into consumption units) instead of just the evolution of consumption. Second,

expressing the SDF in terms of an asset return will be important in the implementation of the

approximation method for the model.
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2.2.2 The market pricing kernel

In order to allow for an unexplained residual in interest rates, I assume that the market’s pricing

kernel is equal to the household’s pricing kernel multiplied by a predetermined (but time-varying)

shock,

Mt+1 = Λt+1 exp (bt) (9)

The shock bt induces variation in interest rates conditional on fundamentals. This type of residual

is often treated as a simple shock to the rate of time preference. With Epstein—Zin preferences,

though, a shock to the rate can have major effects on the behavior of the pricing kernel (specifically,

a time-discount shock can end up accounting for the majority of the variance of the pricing kernel).

The specification in (9) has the advantage that it allows for a residual in the short-term interest

rate without having any further effect on the sources of risk premia.5

3 Aggregate supply

For the supply side of the model, I follow almost exactly the setup in Justiniano, Primiceri, and

Tambalotti (JPT; 2010). JPT is a standard medium-scale New-Keynesian model. It has 7 funda-

mental shocks– price and wage markups, labor-augmenting technical change, investment-specific

productivity, monetary policy, short-term interest rates, and government spending. In JPT’s for-

mulation, the monetary authority’s inflation target is constant. I allow it to vary to help match the

movements in the long end of the yield curve. Other than that and the preference specification,

my model is nearly identical to theirs.

The model is also highly similar to Smets and Wouters (SW; 2003). The critical difference

between the present setup and SW is that technology is difference-stationary rather than trend-

5Consider the Epstein—Zin preferences with constant risk aversion and no labor,

Vt =

{
B1C

1−ρ
t +B2

(
Et
[
V 1−α
t+1

]) 1−ρ
1−α

} 1
1−ρ

where in the usual specification, B1 = (1− β) and B2 = β. There are two ways to affect the pure rate of time
preference in such a way as to raise interest rates: either B2 could fall or B1 could rise. However, those two shifts
have opposite effects on the level of Vt. We also know that any shock that affects Vt will be priced. So not only
are shocks to the rate of time preference necessarily priced, but the sign of the price can take on different values for
innocuous changes in the specification. I therefore skirt all these issues by assuming that the shocks to short-term
interest rates are not driven by shifts in household preferences.
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stationary, where the former is standard in the production-based asset pricing literature.6 The

difference-stationarity assumption helps generate large risk premia: when technology is trend-

stationary, there is very little overall risk in the economy, so households must have an implausibly

high coeffi cient of relative risk aversion in order to generate realistic asset prices.7

Since the model is standard and laid out in JPT and the main contribution of this paper is

the preference specification and bond pricing, the remainder of this section gives a relatively short

description of the production setup. The reader is referred to JPT for a more detailed analysis.

My description follows theirs closely.

3.1 Producers of physical goods

Final-good producers are competitive in both input and output markets and have a CES production

function,

Yt =

[∫ 1

0
Yt (i)

1
1+λp,t di

]1+λp,t

(10)

where i indexes types of intermediate goods, Yt is output of the final good, which can be used for

either consumption or investment, Yt (i) is the use of intermediate of type i, and the elasticity of

substitution across the intermediates, which determines markups in the intermediate-goods sector,

varies over time.

Intermediate-good producers are monopolists for their own goods with production function

Yt (i) = max
{
Kt (i)γ Z1−γ

t Nt (i)1−γ − ZtF̄ , 0
}

(11)

where F̄ is a fixed cost of production that ensures that profits are zero in steady state. Kt (i) and

Nt (i) are intermediate-good producer’s i purchases of capital and labor services, and Zt is the level

of labor-augmenting technology.

6A difference-stationary process has first-differences that follow a stationary process, so it is integrated of order
one. A trend-stationary process, on the other hand, is a process that has random stationary deviations around a
non-stochastic trend (where the trend is generally unmodeled and taken as exogenous).

7Below, I estimate average risk aversion to be 18.7 (ignoring the correction from Swanson, 2011). Rudebusch and
Swanson (2011), who use stationary technology (with a slightly different preference specification) choose an analogous
parameter to be 149.
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3.2 Price setting

I assume Calvo pricing. In every period, a fraction 1 − ξp of intermediate good producers can

change their prices, while the remainder index their prices following the rule,

Pt (i) = Pt−1 (i)π
ιp
t−1π

1−ιp (12)

where Pt (i) is the price of good i in terms of the numeraire, πt ≡ Pt/Pt−1 is aggregate inflation,

and

Pt =

[∫ 1

0
Pt (i)λ

−1
p,t di

]λp,t
(13)

is the aggregate price index (equal to the marginal cost of a unit of the final good). π is the

steady-state inflation rate, and the parameter ιp determines the degree of indexation to lagged

inflation.

The firms that can choose their prices freely in a given period set them to maximize the present

discounted value of profits over the period before they are allowed to choose a new price

Et

{ ∞∑
s=0

ξspMt,t+s

[
Pt (i)

(
s∏

k=1

π
ιp
t+k−1π

1−ιp

)
Yt+s (i)−Wt+sNt+s (i)−Rk,t+sKt+s

]}
(14)

where Mt,t+s ≡
∏s
j=1Mt+j , Wt+s is the wage rate, and Rkt+s is the rental rate for capital.

3.3 Employment agencies and wage setting

Each household is a monopolistic supplier of specialized labor, Nt (j). Competitive employment

agencies aggregate labor supply into a homogeneous labor input (just as the final good producers

aggregate intermediate goods) with the production function,

Nt =

[∫ 1

0
Nt (j)(1+λw,t)

−1
dj

]1+λw,t

(15)

where, as with prices, λw,t determines the elasticity of demand and hence markups in the labor

market. λw,t acts as a labor-supply shock. Since the employment agencies are competitive, the
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price of a unit of the homogeneous labor input is

Wt =

[∫ 1

0
Wt (j)λ

−1
w,t dj

]λw,t
(16)

The labor demand function is then

Nt (j) =

(
Wt (j)

Wt

)− 1+λw,t
λw,t

Nt (17)

As with prices, wages can only be changed intermittently, with probability (1− ξw). If a

household cannot change its wage, it indexes according to the rule

Wt (j) = Wt−1 (j)

(
πt−1

Zt−1

Zt−2

)ιw
(π exp (ḡ))1−ιw (18)

where ḡ is the average growth rate of technology. The household will choose its wage in a manner

similar to how the intermediate-good firms set prices: it maximizes expected utility over the period

that the wage will remain unchanged.

3.4 Capital and investment

Households accumulate capital according to the rule,

Kt = (1− δ)Kt−1 + µt

(
1− S

(
It
It−1

))
It (19)

where δ is the depreciation rate and the function S incorporates adjustment costs in the rate of

investment. In steady state, S = S′ = 0 and S′′ > 0. µt is a shock to the cost of investment at

date t.

3.5 Government policy

The central bank follows a Taylor rule taking the form

Rt
R

=

(
Rt−1

R

)ρR [
π∗t

(
πt
π∗t

)φπ (Yt
Zt

)φY ]1−ρR [
Yt/Yt−1

Zt/Zt−1

]φdY
ηmp,t (20)
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where Rt is the gross nominal interest rate, R is its steady-state value, and π∗t is the inflation

target at date t. Yt denotes aggregate output. Yt is scaled by Zt so that the central bank responds

to deviations of output from its stochastic trend (the level of technology).8 The central bank is

allowed to respond to both the level and change in the output gap. This flexibility helps ensure the

model can match the dynamics of short-term interest rates, which is obviously critical for capturing

the dynamics of the term structure. ηmp,t is an exogenous monetary policy shock.

π∗t is a time-varying inflation target, which can potentially help match the high inflation and

long-term interest rates seen in the early part of the sample. More generally, π∗t induces a level

factor in the term structure. I take the inflation target as exogenous.

The government finances public spending by selling single-period bonds. Government expendi-

tures, Gt, are a time-varying fraction of total output,

Gt =

(
1− 1

gt

)
Yt (21)

where gt follows an exogenous process defined below. Households receive no utility from government

expenditures. As long as the share of output consumed by the government is stationary, that

assumption will have minimal effects on asset prices.

3.6 Market clearing

The aggregate resource constraint is

Ct + It +Gt +Kt−1 = Yt (22)

8To be more rigorous, the stochastic trend of output, Ỹt is defined as

Ỹt ≡ lim
n→∞

Et [Yt+n/ exp (nḡ)]

That is, it is the level to which output is expected to eventually return, where exp (nḡ) takes into account expected
technology growth. Since output and technology are cointegrated under balanced growth, Ỹt is proportional to Zt.
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3.7 Exogenous processes

The price and wage markup shocks follow ARMA(1,1) processes,

log (1 + λp,t) =
(
1− ρp

)
log (1 + λp) + ρp log (1 + λp,t−1) + εp,t − θpεp,t−1 (23)

log (1 + λw,t) = (1− ρw) log (1 + λw) + ρw log (1 + λw,t−1) + εw,t − θwεw,t−1 (24)

where εp,t ∼ N
(
0, σ2

p

)
and εw,t ∼ N

(
0, σ2

w

)
. The ARMA(1,1) form potentially helps match

both the high and low-frequency features of inflation.

Productivity has a unit root and its growth rate follows an MA(1) process,

∆zt = z̄ + εz,t − θzεz,t−1 (25)

where εz,t ∼ N
(
0, σ2

z

)
. While many recent models have studied AR(1) processes, I find that the

MA(1) fits the data better (the estimate of θz is near zero and the behavior of the model is nearly

unaffected by the choice of an AR or MA(1)).

The level of investment-specific productivity is assumed to be a stationary AR(1) process,

logµt = ρµ logµt−1 + εµ,t (26)

where εµ,t ∼ N
(
0, σ2

µ

)
. Note that µt simply determines the effi ciency of the transformation of

the final output good into the investment good, so investment still benefits from the unit-root

innovations to Zt.

The government’s share of output, the monetary policy shock, the shock to the risk-free rate,

and the shock to risk aversion follow AR(1) processes,

log gt =
(
1− ρg

)
log g + ρg log gt−1 + εg,t (27)

ηmp,t = ρmpηmp,t−1 + εmp,t (28)

bt = (1− ρb) b̄+ ρbbt−1 + εb,t (29)

αt = (1− ρα) ᾱ+ ρααt−1 + εα,t (30)
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where εg,t ∼ N
(
0, σ2

g

)
, εmp,t ∼ N

(
0, σ2

mp

)
, εα,t ∼ N

(
0, σ2

α

)
, εb,t ∼ N

(
0, σ2

b

)
.

While a number of recent papers have studied models with time-varying inflation targets (e.g.

Gurkaynak, Sack, and Swanson, 2005; Doh, 2010), there is little understanding of what actually

drives the inflation target. Because the inflation target has a very strong impact on long-term bond

prices, the relationship between the inflation target and the other innovations is a key determinant

of the prices of long-term bonds. I show below that the key shock that drives the pricing kernel

is the innovation to labor-neutral technology (because technology is the only variable with a unit

root). I therefore allow the innovation to the inflation target to be correlated with the innovation

to labor-neutral technology,

log π∗t = (1− ρπ) log π + ρπ log π∗t−1 + επ∗,t + σπ,zεz,t

with επ∗,t ∼ N
(
0, σ̂2

π∗
)
. The parameter σπ,z determines how shocks to labor-neutral technology

affect the inflation target. In robustness tests discussed below, I also allow for the shocks to

investment technology and risk aversion to affect the inflation target. All of the shocks are otherwise

assumed to be uncorrelated.

4 Model solution

The standard method for approximating models of the form studied here is perturbation. The

drawback of perturbation methods for our purposes is that if we want time-variation in risk aversion

to have any effect on the dynamics of the model, we need to take a third-order approximation to

the model. Since the solution would be non-linear, we would have to use the particle filter or some

other nonlinear method in order to calculate the marginal likelihood of the model. I have found,

though, that it is in general very diffi cult to find the peak of the likelihood function for this model,

and it would be infeasible with a method as slow as the particle filter. This is a common problem

in models of the term structure (e.g. Ang and Piazzesi, 2003; Hamilton and Wu, 2011).

I therefore use the essentially affi ne approximation method described in Dew-Becker (2011b).

The essentially affi ne method delivers an approximation to the equilibrium dynamics of the model
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that is linear in the state variables but still allows time-varying risk aversion to affect the behavior

of the endogenous variables. Dew-Becker (2011b) describes the method in detail and show that

Euler equation errors in simulated models are competitive with third-order perturbations. Local to

the non-stochastic steady-state, the essentially affi ne approximation is as accurate as a first-order

perturbation (in a Taylor sense), and hence less accurate than higher-order perturbations. However,

in a stochastic setting, it performs well. This section gives a short overview of the method, and the

appendix provides further details.

Denote the vector of the variables in the model (including the exogenous processes) as Xt and

the vector of fundamental shocks as εt ≡ [εmp,t, εz,t, εb,t, εµ,t, εg,t, εp,t, εw,t, εα,t, επ∗,t]. The equations

determining the equilibrium of the model take the form

0 = G (Xt, Xt+1, σεt+1) (31)

where the expectation operator may appear in the function G. There is one equation for each vari-

able. σ is the perturbation parameter controlling the variance of the shocks. We will approximate

around the point σ = 0, with the non-stochastic steady-state defined as the point X̄ such that

0 = G
(
X̄, X̄, 0

)
The equations G can be divided into two types: those that do not involve taking expectations

over the SDF and those that do.

G (Xt, Xt+1, σεt+1) =

 D (Xt, Xt+1, σεt+1)

Et [M (Xt, Xt+1, σεt+1)F (Xt, Xt+1, σεt+1)]

 (32)

where D and F are vector-valued functions andM is the (scalar-valued) stochastic discount factor.9

For the equations that do not involve the SDF, I use standard perturbation methods and simply

9Note that this formulation does not actually restrict F . Specifically, suppose there were a set of equilibrium
conditions 1 = Eth (Xt, Xt+1, σεt+1), i.e. that do not involve the SDF. We could simply say that F (Xt, Xt+1, σεt+1) ≡
h (Xt, Xt+1, σεt+1) /M (Xt, Xt+1, σεt+1).
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take a log-linear approximation. We thus approximate D as

0 = log (D (exp (xt) , exp (xt+1) , σεt+1) + 1) (33)

0 ≈ d0 + dxx̂t + dx′ x̂t+1 + dεσεt+1 (34)

where the terms d0, dx, dx′ , and dε are coeffi cients from a Taylor approximation and

xt ≡ logXt (35)

x̂t ≡ logXt − log X̄ (36)

D will include equations such as budget constraints, laws of motion for exogenous processes, and

optimization conditions for purely intratemporal decisions.

The second set of equations is dynamic and involves expectations. In many economic models,

including the present one, equations involving expectations take the form

1 = Et [M (Xt, Xt+1, σεt+1)F (Xt, Xt+1, σεt+1)] (37)

The key source of non-linearity in the model is the time-variation in risk aversion, which induces

heteroskedasticity in the SDF. It is therefore natural to deal with M and F separately to isolate

the relevant non-linearity.

I now show that if we log-linearize F , we can transform (37) into a linear condition that can

be solved alongside the remaining equations. M (Xt, Xt+1, σεt+1) will not even be log-linear in

the state variables, but we will be able to state the equilibrium conditions in as a set of linear

expectational difference equations.

First, guess that the approximated equilibrium dynamics of the model take the form

x̂t+1 = C + Φx̂t + Ψεt+1 (38)

We confirm in the end that the solution is actually in this form.

The next step then is to take approximations to M and F separately. Log-linearizing F is
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straightforward, and we obtain,

logF (xt, xt+1, σεt+1) ≈ f0 + fxxt + fx′xt+1 + fεσεt+1 (39)

For M , in the case of the preferences laid out in section 2, the appendix shows that is it is possible

to derive a first-order accurate expression of the form

m
(1)
t+1 = m0 +mxx̂t + (κ0 + αtκ1)σεt+1 −

1

2
σ2α2

tκ1Σκ′1 (40)

where Σ is the variance matrix of εt. The superscript (1) indicates that m(1)
t+1 is first-order accurate

for the true SDF. (40) is the essentially affi ne form from Duffee (2002) that is widely used in the

bond pricing literature.

Taking the expectation of the approximated Euler equation yields,

0 = logEt exp

 m0 +mxx̂t + (κ0 + αtκ1)σεt+1 − 1
2α

2
tσ

2κ1Σκ′1

+f0 + fxxt + fx′xt+1 + fεσεt+1

 (41)

0 = m0 +mxx̂t + f0 + fxxt + fx′ (C + Φx̂t)

+
1

2
σ2 (fx′ + fε) ΨΣΨ′

(
f ′x′ + f ′ε

)
+ αtσ

2κ1ΣΨ′
(
f ′x′ + f ′ε

)
(42)

Since every equation in the system is now linear in the variables of the model, we can solve the

system for the parameters Φ and Ψ from (38). Specifically, we solve the following system,

0 = d0 + dxx̂t + dx′ x̂t+1 + dεσεt+1 (43)

0 = m0 +mxx̂t + f0 + fxxt + fx′ (C + Φx̂t)

+
1

2
σ2 (fx′ + fε) ΨΣΨ′

(
f ′x′ + f ′ε

)
+ αtσ

2κ1ΣΨ′
(
f ′x′ + f ′ε

)
(44)

at the point σ = 1. The reason that the essentially affi ne SDF is useful is that the expectation in

(44) will be linear in the state variables, so we have a simple linear system to solve. This system

can be solved through, for example, Sims’(2001) Gensys algorithm.

Dew-Becker (2011b) shows that the transition function for the model obtained through the

essentially affi ne method is first-order accurate for the true transition function and first-order
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equivalent to a first-order perturbation. Clearly, though, the approximation includes higher-order

terms that account for movements in risk aversion. αt will affect not only asset prices but also the

dynamics of real variables. Dew-Becker (2011b) calibrates a simple version of the RBC model with

time-varying risk aversion and finds that the essentially affi ne approximation has accuracy between

that of second and third-order perturbations.

Standard results derived in the appendix also deliver prices of real and nominal zero-coupon

bonds.

5 Empirics

I estimate the model using standard Bayesian methods. The observable data is the same as in

JPT, but with bond prices added. Both real variables and bond prices are linear functions of the

underlying state variables contained in the vector xt, so we can write the model in state-space

form and measure the likelihood using the Kalman filter. I proceed by finding the posterior mode

and running a Monte Carlo chain from that point to sample from full posterior distribution. The

appendix describes further details of the estimation.

5.1 Data

The sample is 1983q1 to 2004q4. I do not include the financial crisis in the sample because the

zero lower bound on nominal interest rates becomes binding, a phenomenon that the model is not

designed to capture. The sample is cut off in 1983 due to the evidence for breaks in monetary

policy at earlier dates (e.g. the shifts in the Federal Reserve chairmanship between Martin, Burns,

Miller, and Volcker; see Clarida, Gali, and Gertler, 1999).

The observable variables are real GDP, consumption, and investment growth, hours worked

per capita, wage and price inflation, and yields on three-month, 1, 2, 3, 5, 10, and 20-year Trea-

sury bonds. All yields are from Gurkaynak, Sack, and Wright (2006) except for the three-month

yield, which is from the Fama risk-free rate CRSP file. The bond yields and inflation rates are

always reported in annualized percentage points, unless otherwise noted. The real variables are

all obtained from the BEA and the BLS. Consumption is defined as expenditures on non-durables

and services, while investment is the sum of residential and non-residential fixed investment and
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consumer durables expenditures. Real wages are calculated as nominal compensation per hour in

the non-farm business sector (from the BLS) divided by the GDP deflator. The change in the log

GDP deflator is the measure of inflation. Hours worked per capita in the non-farm business sector

are obtained from Francis and Ramey (2009) as updated on Valerie Ramey’s website. None of the

variables are detrended.

Figure 1 plots the data used in the estimation (with the exception of the intermediate-term

bond yields). Output, consumption, and investment growth all look stationary over the sample

and relatively homoskedastic. Hours worked per capita has a strong upward trend in this sample.

Interest rates decline significantly over the sample, even though inflation only declines marginally.

The short-term interest rate is substantially more volatile than the long-term rate, and the term

spread is clearly countercyclical.

The model has 9 fundamental shocks, but we have 14 observable variables. I follow JPT and

other macro papers in assuming that the 6 macro variables plus the short-term interest rate are

observed without error. For the remaining bonds, I assume that the yields have independent

measurement errors with identical standard deviations.

5.2 Calibrated parameters

I calibrate a number of parameters following Christiano, Motto, and Rostagno (2012). The pa-

rameters that are calibrated are those that are expected to be more diffi cult to estimate, such as

steady-state values.

Capital’s steady-state share of income is set to 1/3. The steady-state growth rate of per-capita

output is 1.88 percent per year. Steady-state price and wage markups are 0.22 and 0.05, respectively.

Steady-state hours worked per capita is 675. Steady-state annual inflation is 2.5 percent. The price

and wage stickiness parameters, ξw and ξp are set to 0.66.

For preferences, I focus on estimating the risk aversion process, though I also allow the habit

parameter to be estimated to help match the persistence of consumption growth. I calibrate the

EIS, as is common in the New Keynesian literature, selecting a value of 1.5, which is commonly

used in the asset pricing literature. The inverse Frisch elasticity is set to 1, and the pure rate of

time preference, β, is set to 0.9962, which implies an annualized discount rate of 1.5 percent.

Finally, I assume the inflation target follows nearly a random walk with ρπ∗ = 0.99, consistent
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with the idea that the target is highly persistent. The assumption that ρπ∗ < 1 ensures that inflation

is stationary so that there is a steady-state around which we can approximate. The remainder of

the parameters are estimated

5.3 Priors

Table 1 lists the estimated parameters and their priors in the benchmark estimation. The priors

for the parameters shared with other recent studies are generally the same as in those papers. For

the parameters unique to this paper, e.g. the variance of risk aversion, I use relatively flat priors.

For the volatility of risk aversion, I choose a beta distribution over the ratio of the unconditional

standard deviation of risk aversion to its mean. This means that average risk aversion is forced to

be at least one standard deviation above zero.

In addition to the prior on the parameters, I also incorporate prior information about the

steady-state of the model. Specifically, I add a penalty to the likelihood function for the deviation

of the steady-state term spread from its sample average of 2 percent using a normal distribution

with standard deviation of 0.1. This penalty helps eliminate local extrema in the likelihood that

imply that the steady-state term structure is strongly downward sloping.

5.4 Posterior mode

Table 1 lists the posterior modes for the parameters along with the standard deviation and 2.5th

and 97.5th percentiles of the posterior distribution. Many of the posterior modes are reasonably

close to the corresponding prior means, and the standard deviations of the posteriors for each

parameter are all substantially smaller than those of the priors, implying that the parameters are

well identified. I focus my discussion mainly on those parameters that are unique to this model or

where the posterior mode differs notably from the prior.

The prior for the standard deviation of the innovations to the inflation target favors a reasonably

low standard deviation, 0.2 percent (with a wide prior), and the posterior is consistent with that–

the estimated standard deviation of the innovations to the annualized inflation target in each quarter

is 0.24 percent. This helps the model capture the observed volatility of the level factor in bond

yields, but it is perhaps somewhat high. Intuitively, we will see below that the model ascribes shifts

in the level factor interest rates to shifts in the inflation target. So the model needs a large degree
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of volatility in the inflation target to generate the observed volatility in the level factor. Bekaert,

Cho, and Moreno (2009) obtain a similar result.

The shock to the level of labor-neutral technology has an important effect on the inflation target,

accounting for roughly half of the variance of its innovations. Following a positive innovation to

technology, the central bank is estimated to lower its inflation target, consistent with the idea

that following beneficial supply shocks that drive inflation downward, the central bank takes the

opportunity to drive inflation lower persistently (e.g. Gurkaynak, Sack, and Swanson, 2005). This

mechanism will turn out to be critical to the model’s ability to generate a strongly upward sloping

term structure.

The labor-neutral technology shock has a standard deviation of 1.15 percent and an autocorre-

lation of roughly zero. The permanent component of the technology process (the Beveridge—Nelson

trend) thus has a standard deviation of 1.11, which is similar to the values often calibrated in the

production-based asset pricing literature (e.g. Tallarini, 2000, and Gourio, 2012). The estimated

long-run variance of technology growth is far smaller than the values calibrated in the long-run

risks literature (e.g. Bansal and Yaron, 2004, and Kaltenbrunner and Lochstoer, 2010), but it

is consistent with estimates obtained in JPT and SW and with simple univariate estimates from

consumption and output data (Dew-Becker, 2012).

The standard deviation of the investment technology shock is relatively small, especially com-

pared to JPT. Investment adjustment costs are also relatively small. There are two reasons we

obtain this result. First, one of the strongest pieces of evidence for high investment adjustment

costs is the behavior of equity prices, but they are not included here. Second, we will see below that

shocks to investment technology can have strong effects on interest rate dynamics. The inclusion of

long-term bond prices forces the model to keep shocks to investment technology relatively subdued,

because they otherwise imply that long-term interest rates are counterfactually volatile.

As in Smets and Wouters (2007), JPT, and Christiano, Motto, and Rostagno (2012), the gov-

ernment spending shock is estimated to follow nearly a unit root, explaining the trend in the

consumption-output ratio over the sample.

Risk aversion is estimated to have an average value of 23.46, which is relatively high. It also

has shocks with a quarterly autocorrelation of 0.9, though, which makes it volatile —its standard

deviation is estimated to be 1/3 of its mean.
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6 Asset pricing

This section studies the asset-pricing implications of the model. I first analyze the fit of the model to

the term structure and show that it is competitive with a non-structural model. Next, I decompose

the variance of the SDF to understand the source of the positive term premium in the model. I then

analyze the prices of other assets, including the aggregate capital stock and a claim to aggregate

profits.

6.1 Bond prices

6.1.1 Fitted yields

Figure 2 plots the deviations of the fitted yields from their actual values for the five yields that are

assumed to be measured with error (reported in annualized basis points). The estimated standard

deviation of these fitting errors is 17 basis points, which is economically small compared to the

overall variation of the yields that is on the order of hundreds of basis points. The errors are all

centered around zero, meaning that the model can capture the shape of the term structure on

average. The volatility of the errors looks somewhat higher for the 1 and 5-year yields and in the

earlier part of the sample. There is clearly some autocorrelation in the errors; the fitted value for

the 3-year yield is consistently too high in the first half of the sample, and the 4-year fitted yield

is consistently too low in the second half, for example. And there is also some cross-correlation

in the errors; the first principal component explains 37 percent of the total variance of the errors

(twice what it would if the errors were orthogonal). These are thus clearly not classical (i.i.d.)

measurement errors, but their small mean and volatility shows that the model does a reasonable

job of fitting the data, and they are not disturbingly far from white noise.

While there are nine unobservable shock processes that can help us match the data, the model

is asked to fit 14 data series, so obtaining a good fit for the bond yields is not trivial. Loosely, we

have 6 macro variables that identify 6 shock processes, plus three extra processes (the monetary

policy shock, the inflation target, and risk aversion) that can be used to fit the bond yields. The

degrees of freedom here are thus comparable to a non-structural bond-pricing model with three

unobservable factors, but we also have numerous constraints on dynamics and risk prices.

Table 2 compares the measurement errors to the fitting errors obtained from simple non-
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structural models. Specifically, I regress interest rates on two or three factors extracted from

the data and report the standard deviation of the residuals. In each case one of the factors is the

1-quarter interest rate so that the non-structural models match the feature of the structural mod-

els that that yield is measured without error. The remaining one or two factors are estimated as

principal components from the residuals from regressions of the remaining yields on the 1-quarter

yield.

The first row of table 2 lists the standard deviations of the yield errors in basis points obtained

from a simple three-factor non-structural model, while the second row uses two factors. The

standard deviations with three factors are all between 5.8 and 18.1 basis points, compared with a

standard deviation of 16.72 basis points for the benchmark model. Though the fit of the structural

model is clearly somewhat poorer than the non-structural regressions, it is certainly competitive,

and the economic significance of the difference in the goodness of fit is minimal.

The third and fourth rows of table 2 report the measurement errors in constrained models that

assume constant relative risk aversion and a constant inflation target (the other parameters are

reestimated). In both cases, the measurement errors have standard deviations roughly 50 percent

larger than the unrestricted model, and they are larger than the errors from both the two and

three-factor non-structural models.

An alternative way to measure the importance of allowing risk aversion and the inflation target

to vary over time is to look at the log marginal likelihood of the three models. Table 3 reports

the marginal likelihoods of the benchmark model and the two constrained models. The difference,

i.e. the Bayes factor, is 52 log points for the model with constant risk aversion and 89 log points

for the model with constant risk aversion, implying that we would need to have an extraordinarily

strong prior that risk aversion or the inflation target is fixed in order to prefer one of the restricted

models over the benchmark. Comparing the two restricted models, the version with the constant

risk aversion is substantially preferred over the model with the constant inflation target.

6.1.2 Steady-state yields

Another way to evaluate the fit of the model is to ask whether the steady state of the model matches

the average term structure in the data. Looking at the steady state keeps the Kalman filter from

using large deviations in the unobservable state variables to fit the term structure. Figure 3 plots the
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average term structure in the sample along with its model-implied steady state. The solid black

line gives the steady-state term structure in the model, renormalized so that the ten-year yield

matches the empirical ten-year yield.10 To capture the uncertainty in the empirical term structure,

the grey area gives the 95-percent confidence intervals for the means of the empirical yields relative

to the ten-year yield (i.e. the confidence intervals for the spreads; the intervals are calculated using

the Newey—West method with lag a 6-quarter lag window). What figure 3 shows is that the model

matches the spread between the 10- and 2-year yields very well, and the model’s steady-state 10-

year/1-quarter term spread is well within the 95-percent confidence interval. However, the model

does have some trouble matching the degree of curvature of the average term structure below two

years, which could potentially be driven by unmodeled liquidity premia.

Two features of the model are critical for generating the large steady-state term premium: first,

following a positive shock to technology, the central bank’s inflation target falls; second, variation

in risk aversion raises the premia on risky assets. To see the prima facie evidence that these two

effects are key, figure 3 includes two lines giving the steady-state term structure in constrained

models. The first line assumes that innovations to the inflation target are uncorrelated with the

permanent technology shock, while the second line assumes that risk aversion is fixed. Neither line

reestimates the other parameters, so they simply isolate the effects of those two features of the

model.

The line exiting the top of the chart is for the model when shocks to technology are assumed

to have no impact on the inflation target. We then obtain the usual result that the term structure

is downward-sloping, and the steady-state term spread is -137 basis points. Time-varying risk

aversion also turns out to be important, though. When risk aversion is fixed, the term structure

is still upward-sloping, but the spread is much smaller– only 120 basis points in steady-state,

compared to 207 in the data and 193 in the benchmark model.

Models with Epstein—Zin preferences often have trouble matching the behavior of the real yield

curve (see the discussion in Bansal, Kiku, and Yaron, 2012). In this model, the real yield curve

is slightly downward sloping on average — the real 10/1-year term spread is -0.6 in steady-state.

Following a positive technology shock, real interest rates rise, both because the marginal product of

10 I use this normalization because the estimated inflation target is above zero through most of the sample. The
unconditional variance of the inflation target is suffi ciently high that its average level is not well identified.
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capital is high and because the central bank wants to hold inflation down. This causes real bonds

to be hedges against technology shocks. As to whether this is an empirically plausible result, Evans

(1998) finds that in the UK, which has the longest currently available series of inflation-indexed

bonds, the real 10/1 year term spread averaged -0.88 percent between 1984 and 1995. Bansal, Kiku,

and Yaron (2012) extend his results and find an average spread of -1.92 percent between 1996 and

2008.

6.1.3 Term premia

The size of the steady-state term spread in the model can be interpreted as the average term

premium– it is the excess return (in logs) that an investor earns in expectation by buying a long-

term bond and holding it to maturity instead of buying short-term bonds and rolling them over

for the same amount of time. An important feature of this model is that risk aversion varies over

time, which should make the term premium also vary over time.

The top panel of figure 4 plots the expected annualized excess return on holding a ten-year

nominal bond (over a one-quarter bond) from the benchmark model against the expected excess

return obtained from a simple VAR(1) in the 1-quarter, 5-year, and 10-year yields.11 The realized

annual returns are plotted in light gray.

The structural forecast is highly correlated (34 percent) with the fitted value from the VAR,

though it is substantially smoother. Both series rise in the recessions in 1991 and 2001, though the

VAR implies that risk premia on long-term bonds were substantially higher in the late 1980’s than

does the structural model. The high variance of the forecast from the VAR is somewhat implausible

and suggests a degree of overfitting.

The bottom panel of figure 4 plots the term premium from the benchmark model against the

term spread. The term premium is defined as the spread between the 10-year yield and the average

of the expected 1-quarter yields over the life of a 10-year bond. The variance of the term premium

is non-trivial in comparison to the term spread. In the two recessions in the sample, the increases

in the term spread are substantially larger than the movements in the term premium, but the term

premium does rise in both episodes. Interestingly, the movements in the term spread outside of the

11Where, as in Campbell and Shiller (1991), the return on the 10-year bond is measured as −39y10,t/400 +
40y10,t/400, where y10,t is the annualized 10-year yield measured in percentage points. The implied dynamics of
the ten-year yield from the VAR are used to obtain a forecast of expected excess returns.
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two recessions seem almost entirely driven by movements in the term premium. In particular, the

rises in the term spread in 1985, 1987, 1997, and 1999 are all associated with increases in the term

premium of similar magnitudes. On the other hand, the inversions of the yield curve in 1989 and

2000, both just prior to recessions, are associated with only minor declines in risk aversion, and the

subsequent rises in the term spread with similarly small rises in risk aversion.

6.1.4 Variation in interest rates

To show how the bond yields respond to the various shocks, figure 5 plots responses of a level, slope,

and curvature factor to the 9 fundamental shocks. Following Bekaert, Cho, and Moreno (2010),

the level factor is defined as the average of the 1-quarter and 5 and 10-year yields; the slope factor

is the 10-year/1-quarter term spread; and curvature is the sum of the 5 and 1-year yields minus

twice the 3-year yield. The shocks are orthogonalized in the sense that the interactions between

the inflation target and risk aversion and the other shocks are switched off. So figure 5 shows, for

example, the effect of a pure increase in the level of technology, holding the inflation target fixed.

The shocks are all unit standard deviation impulses.

For the level factor, most shocks have only small effects. The monetary policy and risk aversion

shocks both reduce the level factor, but at relatively high frequencies. The low-frequency move-

ments, as we would expect, are driven by the inflation target shock. Since shocks to labor-neutral

technology are estimated to reduce the inflation target, they lead to persistently low inflation. The

model’s explanation of shifts in the level factor is thus simple: the level of the term structure is

determined by the central bank’s inflation target, which is in turn partly determined by shocks to

technology.

As we would expect, an increase in risk aversion raises the term spread. High risk aversion is

associated with a high term premium, and hence high interest rates on long-term bonds relative to

the short-term interest rate. This result fits with results on bond return forecasting (Campbell and

Shiller, 1988) and the fact that the term spread forecasts high equity returns (Fama and French,

1989).
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6.1.5 Effect of bond price data on estimates

The majority of the macro literature does not include the term structure of interest rates in esti-

mation. A key question, then, is how that addition here affects the estimates. The second column

of table 6 shows estimates we obtain when bond prices are not included in the estimation. Because

we now have fewer observables, I eliminate the shocks to risk aversion and the inflation target from

the model. Those two processes are largely identified from the behavior of long-term bond prices.

The first column replicates the benchmark estimates from table 1.

Many of the parameters estimates are similar between the benchmark estimates and those

without bond prices. There are two sets of parameters that are noticeably different, though. First,

as we might expect, the monetary policy parameters change somewhat. Since these parameters

directly affect the behavior of interest rates, it would be surprising if they did not change. More

interestingly, we see large changes in the estimates of the parameters related to investment. The

size of investment technology shocks is much larger when bond prices are excluded, the shocks

are more persistent, and investment adjustment costs are multiplied by a factor of 7 —rising from

0.14 to 1.06. Without bond prices in the estimation, we come closer to the results of JPT that

investment technology shocks are the dominant drivers of investment behavior.

To help see why adding bond prices causes the estimation to place so much less weight on

investment shocks, figure 6 plots impulse responses of the one-quarter, 5-year, and 10-year (annu-

alized) interest rates to an investment shock at the two sets of estimates. Without bond prices

included in the estimation, the investment shock has far larger effects on interest rates than with

bond prices. On the impact of the shock, the five-year rate rises by three times as much when

bond prices are excluded than when they are not. The long-term yields also decline substantially

at longer horizons. On the other hand, when bond prices are included, the investment shock has a

small initial impact on long-term interest rates which rapidly falls to zero.

6.2 Determinants of asset prices

6.2.1 The variance of the SDF

An asset’s expected excess return over the real riskless interest rate is determined by its covariance

with the stochastic discount factor. One of the more interesting outputs of a model as rich as
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this one is the variance decomposition for the SDF. Table 4 reports a variance decomposition for

the SDF at the one-quarter horizon. The variance of the SDF is essentially entirely driven by

the neutral technology and risk aversion shocks. The bar chart in the bottom panel of table 4

decomposes the variance of the SDF into components coming from the neutral technology shock,

the risk aversion shock, and the remaining shocks combined. The lines at the top of each bar give

the 2.5 and 97.5 percentiles of the posterior distribution. The 97.5 percentile for the variance share

in the SDF for non-technology and non-risk aversion shocks is less than 2 percent

On first glance this result might be somewhat surprising, but it is in fact a deep characteristic

of models with Epstein—Zin preferences with a high EIS and high risk aversion. The results are

relatively straightforward to see in a log-linearized version of the model. The appendix shows that

we obtain the following approximation to the pricing kernel,

∆Et+1 log Λt+1 = ∆Et+1 logUC,t+1 (45)

+
1− αt
1− ρ ∆Et+1

∞∑
j=0

βj∆ logUt+j+1 (46)

+
ρ− αt
1− ρ ψrp∆Et+1

∞∑
j=0

βjαt+j (47)

where ∆Et+1 ≡ Et+1−Et denotes the change in expectations as of date t+1 and ∆ ≡ (1− L) is the

first-difference operator. ψrp is a function of the other parameters, and determines the relationship

between expected returns on the utility portfolio and risk aversion.12 This result is similar to one

obtained by Tanaka (2012).

The innovation to the SDF has three components: the innovation to current marginal util-

ity, the innovation to future expected growth in utility, and the innovation to risk aversion.

When β is equal to 1, a shock that has no long-run effect on the level of utility will induce

zero change in ∆Et+1
∑∞

j=0 β
j∆ logUt+j+1. A permanent shock to utility, though, will raises

∆Et+1
∑∞

j=0 β
j∆ logUt+j+1 by a positive amount.13 The price of risk for a particular shock,

which is simply the amount that it affects the pricing kernel, depends on the sum of its effects

on ∆Et+1 logUC,t+1, 1−αt
1−ρ ∆Et+1

∑∞
j=0 β

j∆ logUt+j+1, and risk aversion.

12That is, EtrU,t+1 is equal to a constant plus ψrpαt.
13Dew-Becker and Giglio (2013) use this insight to show that when household utility depends only on consumption,

risk prices under Epstein—Zin preferences depend almost purely on the very long-run effects of shocks. A shock with a
purely transitory impact on consumption will tend to have a very small risk price under standard parameterizations.
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When η = 0, a one-percent temporary increase in consumption will reduce logUC,t+1 by ρ

percent, while it will have roughly zero effect on ∆Et+1
∑∞

j=0 β
j∆ logUt+j+1 (precisely zero when

β = 1). A one-percent permanent increase in consumption, though, will both reduce logUC,t+1 by ρ

percent and also raise
∑∞

j=0 β
j∆ logUt+j+1 by 1 percent, thus shifting the SDF down by −ρ+ 1−αt

1−ρ .

Given the estimated parameters, and for standard calibrations where α > ρ−1, −ρ+ 1−αt
1−ρ is much

more negative than −ρ, which is why the temporary shocks have very small risk prices.

The above discussion focuses on just consumption. The reason is that under balanced growth,

labor supply is stationary. That means that the changes in labor supply tend to induce minimal

effects on ∆Et+1
∑∞

j=0 β
j∆ logUt+j+1 (again, zero if β = 1). The specification of the period utility

function also implies that UC does not depend on labor supply. So to understand the pricing kernel,

it is suffi cient to understand consumption dynamics.

To help elucidate the results further, table 5 lists the marginal effects of each of the shocks

on the pricing kernel and the three components of the decomposition above, ∆Et+1 logUC,t+1 ,

1−ᾱ
1−ρ∆Et+1

∑∞
j=0 β

j∆ logUt+j+1, and
ρ−ᾱ
1−ρψrp∆Et+1

∑∞
j=0 β

jαt+j . That is, the first column is equal

to the risk prices (κ0 + ᾱκ1) from equation (40), and the remaining columns decompose the risk

prices. While we can see that the various shocks have effects on∆Et+1 logUC,t+1 of a similar order of

magnitude, those effects are dwarfed by the effects of risk aversion on 1−ᾱ
1−ρ∆Et+1

∑∞
j=0 β

j∆ logUt+j+1

and of risk aversion on ρ−ᾱ
1−ρψrp∆Et+1

∑∞
j=0 β

jαt+j .

6.2.2 Impulse responses

Since the technology and risk aversion shocks are the key to understanding the pricing kernel, it

is natural to ask how they affect the economy. Figure 7 plots impulse responses to an increase

in labor-neutral technology and a decrease in risk aversion. These impulse responses are different

from those in figure 5 because they do not turn off the interactions between the inflation target and

the neutral technology shock. The idea is that we want to see what happens on average following

the technology and risk aversion shocks because that behavior is what is relevant for understanding

the correlations with the SDF.

Following the technology shock, inflation falls, while output and real interest rates rise: a

standard positive supply shock. The declines in inflation and nominal interest rates are especially

pronounced and persistent. The long-run decline in inflation is obviously driven by the shock to
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the inflation target. It is somewhat surprising how rapidly inflation falls, though. There are at

least two reasons for this result. First, since output is well below trend, marginal costs are low.

Second, though, because current inflation depends substantially on expected future inflation, when

the inflation target falls, the expectations channel causes firms to want to immediately reduce

inflation.

A decline in inflation on the impact of a technology shock is obtained in JPT and SW, even

though they do not have time-varying inflation targets. In all of these models, because prices are

sticky, when there is a positive supply shock, rather than raising output, firms simply produce the

same quantity as previously, thereby reducing employment and hence demand. Positive technology

shocks are thus associated with small increases in output and large declines in the output gap.

There is also a small empirical literature that provides more reduced-form evidence on effects of

this sort using direct measures of technology (e.g. Basu, Fernald, and Kimball, 2006).

Figure 7 also reports impulse responses for a decline in risk aversion. The effects are very small

compared to those for the technology shock. A unit standard deviation decline in risk aversion

lowers output by less than one tenth of one percent, and has similar effects on the other variables

plotted in figure 7. Figures 4 through 7 show, then, that while shifts in risk aversion have important

effects in helping the model match asset prices, they have only minimal effects on the real economy.

6.2.3 Robustness

Given how important the correlation between shocks to the inflation target and risk aversion is, an

obvious question is what happens if we allow more of the shocks to be correlated with the inflation

target. I allow the investment technology to also play a role, since the conceptual difference between

investment and labor-neutral technology shocks is small. I also allow the risk aversion shock to be

correlated with the inflation target since we saw above that shocks to risk aversion are priced. The

third pair of columns in table 6 reports results from this experiment. The parameter estimates

are largely unchanged, and risk aversion and investment technology are estimated to have only

relatively small effects on the inflation target compared to labor-neutral technology.

Another good question is why labor-neutral technology follows a unit root but investment-

specific technology and the other shocks do not. The last pair of columns in table 6 uses a uniform

prior on the persistence of the investment-specific technology shock and the shocks to price and wage
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markups. The model remains close to the original interior solution, suggesting that the assumption

that these shocks do not have unit roots is not restrictive.14

6.2.4 Other asset prices

After the SDF, table 4 reports variance decompositions for the returns on a number of assets. The

bottom panel of table 4 reports the fraction of the variance of the one-quarter innovation to each

return coming from the neutral technology shock, the risk aversion shock, and all other shocks

combined.

Column 2 reports the variance decomposition for the return on the utility portfolio. 53 percent

of its variance comes from the discount rate shock. The reason is simply that the utility claim has

a relatively long duration, like that of a consol with a coupon that grows at the average rate of the

economy, so shifts in real interest rates have a large effect on its price. The discount rate shock

mainly affects real interest rates, so it drives the variance of the utility claim. Row 11 shows that

the correlation of the utility return with the SDF is -0.39.

More interestingly, the third and fourth columns of table 4 report variance decompositions for

a claim on the profits earned by capital and the same claim levered two to one on short-term

nominal debt.15 Once again, little of the variance of the return is driven by the technology or risk

aversion shocks. Column 5 shows that if capital claims are levered on real debt, then they become

more highly correlated with the pricing kernel, and the model can actually generate a large equity

premium (though one that is still too small by half). The reason is that the real term structure is

downward sloping, so a portfolio that is short real bonds will earn a positive return, whereas being

short nominal bonds drives the return downward.

6.2.5 The Hansen—Jagannathan bound

Figure 8 plots the fitted annualized Hansen—Jagannathan (HJ; 1991) bound against the nominal

term spread. The Hansen—Jagannathan bound says that the maximum Sharpe ratio of any asset

must be less than the ratio of the standard deviation of the pricing kernel to its mean. The estimated

steady-state level of the HJ bound —0.55 —is high enough to account for the observed Sharpe ratio

14 I also tried constraining the investment technology shock to have a unit root and then reestimated the model.
The log-likeilhood at that point was 90 log points lower than at the optimum.
15The profits earned by capital are modeled as the revenues the household receives from renting out its capital.
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on the aggregate stock market in this sample of 0.26. More importantly, though, the price of risk in

this model is highly volatile. The estimated standard deviation of the Hansen—Jagannathan bound

is 95 percent of its mean. The level of variability here is somewhat higher than but still similar to

that used in Dew-Becker (2011a) to match the degree of predictability observed for aggregate stock

returns in the post-war sample. Furthermore, we can see that the Hansen—Jagannathan bound is

highly correlated with the term spread, consistent with the view that the term spread helps forecast

returns on a range of assets (e.g. Fama and French, 1989)

7 The real economy

Up to now, the analysis has focused mainly on asset pricing. But the model gives a rich description

of the real side of the economy. While I leave a deeper analysis of New Keynesian models to papers

focused on those models for their own sake, the interaction of the real side of the economy with

asset prices is important to this paper.

Figure 9 gives a variance decomposition for the variables used in the estimation. The figure

decomposes the variance of each variable at frequencies of 6 to 32 quarters into components coming

from each of the structural shocks.16 Except for consumption growth, for which the interest rate

shock is dominant, none of the other variables examined in figure 9 are dominated by any particular

shock. Notably, the shock to risk aversion has almost no effect on the variance of any of the real

variables at business-cycle frequencies. Its largest effect is on consumption growth, for which the

variance share is still only 4 percent. The bar for the term spread, though, shows that risk aversion

has a somewhat larger effect on the term spread, as we saw in figure 5; it explains 11 percent of

the variance of the term spread at business-cycle frequencies. This value is surprisingly low, and

suggests that even though shifts in risk aversion are clearly important for generating a good fit of

the model in terms of the marginal likelihood, movements in the term spread over the business

cycle come largely from shifts in monetary policy.

A second interesting result is that I find that shifts in investment-specific technology are far less

16The variance decomposition is calculated using a spectral decomposition of the state-space form of the model.
Specifically, since the structural shocks are orthogonal, the spectral density of the endogenous variables is equal to
the sum of the densities obtained when each shock is turned on individually. Calculating variance shares over certain
frequencies then simply requires integrating the density over those frequencies. I numerically integrate by calculating
the spectral density at 100 increments between wavelengths of 6 and 32 quarters.
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important for driving investment than JPT did. They estimated that 83 percent of the variance

in investment growth at business-cycle frequencies is driven by the investment technology shock,

whereas I estimate a value of only 21 percent. Since our models are essentially identical other than

the preferences I use, and the time-varying risk aversion has minimal real effects, the difference

must come from the fact that I include interest rates in the estimation.

My estimate for the volatility of the investment technology shock is smaller than that of JPT

by a factor of 6. Looking at figure 5, if the investment technology shocks were that more volatile

by a factor of 6, they would clearly have the largest effects on the slope and curvature factors of

any of the shocks. It is the large effect of the investment-technology shock on interest rates that

makes the model place less weight on it.

To test whether it is actually the inclusion of the interest rate data as opposed to the other

modifications of the model that explain the difference with JPT, I reestimate the model excluding

data on interest rates (other than the one-quarter yield). The bar on the far right in figure 9 shows

the variance decomposition for investment growth from the reestimated model. I replicate JPT’s

result that the majority of the variance of investment growth at business-cycle frequencies is driven

by the investment technology shock.17 In other words, when the model is augmented to match the

behavior of bond prices, JPT’s primary result about the importance of the shock to investment

technology no longer holds.

Figure 9 shows that including asset prices in the estimation of DSGE models can have major

effects on estimated variance decompositions. Asset prices are particularly useful in helping to

estimate structural models because they encode investors’ expectations. In this case, they help

reject the hypothesis that shocks to investment technology are the key driver of the business cycle.

Table 4 gives one-quarter-ahead variance decompositions for output, consumption, and invest-

ment growth. This decomposition is useful for understanding whether any of these variables would

be powerful asset pricing factors. Specifically, in a world where consumption followed a random

walk and households had Epstein—Zin preferences with constant relative risk aversion, consumption

17While I do not replicate JPT’s results exactly, I do also find in the reestimated model that the investment
technology shock is important for more variables than just investment itself. It accounts for 30 percent of the
variation in output growth and 20 percent of consumption growth. Moreover, in the reestimated model the investment
shock accounts for 41 and 48 percent of the variance of the one-quarter nominal interest rate and the term spread,
respectively. It is this latter result that explains the divergence between the results when interest rates are included
and excluded.
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growth would be perfectly correlated with the SDF, so it would price assets in the economy.

What table 4 shows is that consumption, output, and investment growth are all only weakly

correlated with the SDF at the one-quarter horizon– they all have correlations less than 16 percent.

So asset pricing with only consumption growth would work poorly in this economy. Many asset-

pricing studies with Epstein—Zin preferences include both consumption growth and the return on

the stock market as pricing factors. If we believe that the stock market is a claim on aggregate

capital, then table 3 shows that it will do little to help with asset pricing as it is also only weakly

correlated with the SDF.

8 Conclusion

This paper studies bond pricing in a medium-scale New-Keynesian model with a time-varying price

of risk. I show that the model can generate a large and volatile term premium. The term premium is

driven by the combination of two factors– a negative response of interest rates to positive technology

shocks and variation in risk aversion. Removing either of these effects eliminates the model’s ability

to match the magnitude of the term premium.

While shocks to risk aversion and technology determine average asset returns, they have only

weak effects on real variables at business-cycle frequencies. The covariance of asset returns with

real variables over the business cycle is therefore unimportant for determining average returns.

Furthermore, while risk aversion is estimated to be highly volatile and to be an important determi-

nant of the dynamics of the term spread, it has almost no effects on the real economy. This model

thus suggests that there is a separation between the price of risk in financial markets and the real

economy.

On the other hand, including asset prices in estimation has large effects on estimated para-

meters. Bond prices encode expected future interest rates, so they are very informative about

parameters that affect how interest rates respond to shocks. This paper thus argues that even

though shocks that affect financial risk premia may have limited real effects, including financial

data in the estimation is still important for correctly identifying the underlying drivers of the

economy.
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Table 1. Priors and posterior modes

Description Distribution Mean Std. Dev. Mode Std. Dev. 5% 95%
1 ιp Price indexation Beta 0.3 0.1 0.47 0.03 0.42 0.51

2 ιw Wage indexation Beta 0.3 0.1 0.30 0.02 0.28 0.33

3 η Habit parameter Beta 0.5 0.2 0.13 0.01 0.11 0.15

4 S Investment adjustment costs Gamma 5 3 0.14 0.02 0.11 0.17
5 fπ Taylor rule inflation Normal 1.6 0.3 1.71 0.04 1.65 1.77

6 fy Taylor rule output gap Gamma 0.15 0.03 0.12 0.00 0.12 0.12

7 f∆y Taylor rule output gap growth Normal 0.15 0.1 0.24 0.01 0.23 0.26

8 ρR Monetary policy AR Beta 0.75 0.1 0.97 0.00 0.97 0.97

9 ρz Technology MA U[-1,1] 0.5 0.29 -0.04 0.01 -0.05 -0.03

10 ρg Government spending AR Beta 0.6 0.2 0.95 0.00 0.95 0.96

11 ρµ Investment technology AR Beta 0.6 0.2 0.50 0.02 0.48 0.53

12 ρλp Price markup AR Beta 0.6 0.2 0.89 0.01 0.87 0.91

13 ρλw Wage markup AR Beta 0.6 0.2 0.41 0.01 0.39 0.43

14 ρb Consumption demand AR Beta*0.85 0.43 0.085 0.78 0.01 0.77 0.80

15 ρα Risk aversion AR Beta 0.8 0.1 0.90 0.00 0.89 0.90
16 σR MP shock vol. IG(1) 0.1 1 0.14 0.00 0.14 0.14

17 σz Neutral tech. shock vol. IG(1) 1.5 2 1.15 0.03 1.10 1.20

18 σg Gov't spending vol. IG(1) 0.5 1 0.68 0.01 0.66 0.69

19 σµ Investment tech. vol. IG(1) 0.5 0.5 0.94 0.02 0.90 0.98

20 σλp Price markup vol. Normal 0.14 0.05 0.14 0.01 0.13 0.15

21 σλw Wage markup vol. Normal 0.2 0.05 0.32 0.01 0.31 0.32

22 σb Demand shock vol. IG(1) 0.001 0.003 0.0031 0.0001 0.0029 0.0033

23 σπ* Inflation target vol. IG(1) 0.2 0.2 0.19 0.01 0.18 0.20

24 σα/α RRA volatility/RRA mean U[0,1] 0.5 0.29 0.34 0.01 0.32 0.36

25 σπ,z corr(pi*,tech.) U[-1,1] 0 0.68 -0.15 0.01 -0.16 -0.14
26 αSS Mean risk aversion Normal 7 5 23.46 0.74 22.30 24.71

27 σyields Bond measurement errors (bp) IG(1) 20 20 16.72 0.63 15.73 17.78

28 R* Steady-state risk-free rate U[-1,1] 0 0.58 0.00 0.00 0.00 0.00

29 θp Price markup MA Beta 0.7 0.15 0.37 0.01 0.35 0.39
30 θw Wage markup MA Beta 0.7 0.15 0.36 0.02 0.33 0.38

Priors Posterior

Note: Priors, posterior mode, and percentiles of the posterior distribution from the benchmark model.



Table 2. Fitting errors

1-quarter 1-year 2-year 3-year 4-year 5-year 10-year 20-year

3-factor model 0 9.44 5.90 5.75 10.60 18.13 8.73 14.38

2-factor model 0 23.27 25.07 21.01 19.56 18.65 15.95 26.34

Benchmark model 0 16.72 16.72 16.72 16.72 16.72 16.72 16.72

Constant RRA 0 24.18 24.18 24.18 24.18 24.18 24.18 24.18

Constant π* 0 24.21 24.21 24.21 24.21 24.21 24.21 24.21

Table 3. Log marginal likelihoods

Likelihood Bayes Factor

Benchmark 3796.8

Constant RRA 3745.3 51.50

Constant π* 3707.6 -89.20

Note: Fitting errors measured in annualized basis points. The model-based estimates use the posterior modal estimate 

for the standard deviation. The 1-quarter and 10-year errors are constrained to equal zero in the structural model. The 

errors from PCA are the standard deviations of the residuals from regressions on the bond yields on their first three 

principal components.



Table 4. One-quarter ahead variance decompositions

1 2 3 4 5 6 7 8 9

SDF Utility return Cap. claim

Nom. lev. 

cap. claim

Real lev. cap. 

claim

10-year bond 

return

Output 

growth

Consumption 

growth

Investment 

growth

1 Monetary policy 0.01 0.11 0.29 0.01 0.11 0.02 0.35 0.12 0.30

2 Neutral tech. 0.77 0.02 0.06 0.30 0.31 0.26 0.01 0.00 0.01

3 Gov't spending 0.01 0.05 0.00 0.01 0.04 0.00 0.01 0.05 0.01

4 Investment tech. 0.00 0.04 0.22 0.06 0.08 0.00 0.10 0.05 0.25

5 Price markup 0.00 0.01 0.02 0.03 0.03 0.00 0.01 0.02 0.00

6 Wage markup 0.00 0.01 0.06 0.05 0.02 0.00 0.03 0.01 0.03

7 Time preference 0.00 0.53 0.00 0.05 0.01 0.00 0.05 0.57 0.01

8 Inflation target 0.01 0.15 0.36 0.49 0.12 0.56 0.44 0.15 0.38

9 Risk aversion 0.20 0.07 0.00 0.00 0.28 0.15 0.00 0.04 0.01

Annualized Moments:

10 Standard deviation 0.27 3.45 0.02 0.39 2.69 21.07 5.12 3.41 10.67

11 Correl. w/ SDF 1.00 -0.39 0.12 0.40 -0.65 -0.53 -0.06 -0.23 0.01

12 Expected return N/A 0.72 0.00 -0.09 0.95 6.02 N/A N/A N/A

Note: decompositions of one-quarter ahead forecast error. Levered returns for capital and consumption claims assume that the investor finances half the purchase price of the 

given claim with a 10-year nominally riskless bond. The 10-year return is the one-quarter return from holding a 10-year nominally riskless bond. The moments in rows 10–12 are 

annualized. The black bars in the figure give the 95 percent credible region based on random draws from the posterior density.
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Table 5. Decomposition of innovation to pricing kernel

SDF UC Σ∆U Σα

Monetary policy 0.021 0.006 0.015 0.000

Neutral tech. -0.237 0.000 -0.237 0.000

Gov't spending 0.023 0.004 0.019 0.000

Investment tech. 0.002 0.004 -0.002 0.000

Price markup 0.001 -0.002 0.003 0.000

Wage markup 0.002 -0.002 0.003 0.000

Time preference 0.017 0.013 0.004 0.000

Inflation target -0.031 -0.006 -0.024 0.000

Risk aversion 0.120 0.003 0.001 0.115

Notes: The first column is the effect of each of the shocks on the market pricing kernel. The 

next three columns decompose the effects into parts coming from news about the marginal 

utility of consumption, news about future growth in period utility, and news about future risk 

aversion. 



Table 6. Posterior modes for alternative models

Description Benchmark

1 ιp Price indexation 0.47 0.02 0.4558 0.07 0.45 0.02 0.4524 0.00

2 ιw Wage indexation 0.30 0.03 0.225 0.04 0.32 0.03 0.31 0.05

3 η Habit parameter 0.13 0.03 0.0707 0.02 0.14 0.02 0.13 0.08

4 S Investment adjustment costs 0.14 0.01 1.0593 0.13 0.11 0.01 0.11 0.02
5 fπ Taylor rule inflation 1.71 0.03 2.5308 0.09 1.74 0.05 1.79 0.16

6 fy Taylor rule output gap 0.12 0.00 0.0605 0.00 0.12 0.01 0.12 0.00

7 f∆y Taylor rule output gap growth 0.24 0.00 0.15 0.01 0.24 0.01 0.24 0.00

8 ρR Monetary policy AR 0.97 0.00 0.8277 0.01 0.97 0.00 0.97 0.00

9 ρz Technology MA -0.04 0.00 -0.0076 0.01 -0.06 0.01 -0.06 0.00

10 ρg Government spending AR 0.95 0.00 0.9502 0.00 0.95 0.00 0.95 0.00

11 ρµ Investment technology AR 0.50 0.03 0.8171 0.01 0.51 0.03 0.51 0.05

12 ρλp Price markup AR 0.89 0.01 0.8404 0.03 0.89 0.01 0.89 0.01

13 ρλw Wage markup AR 0.41 0.02 0.7183 0.02 0.41 0.01 0.38 0.00

14 ρb Consumption demand AR 0.78 0.01 0.8128 0.01 0.78 0.01 0.78 0.01

15 ρα Risk aversion AR 0.90 0.04 0.8461 0.01 0.89 0.00 0.89 0.00
16 σR MP shock vol. 0.14 0.00 0.1479 0.00 0.14 0.00 0.14 0.00

17 σz Neutral tech. shock vol. 1.15 0.02 0.8795 0.02 1.22 0.02 1.22 0.00

18 σg Gov't spending vol. 0.68 0.03 0.6741 0.01 0.68 0.01 0.68 0.00

19 σµ Investment tech. vol. 0.94 0.02 1.844 0.02 0.87 0.01 0.87 0.00

20 σλp Price markup vol. 0.14 0.00 0.1552 0.01 0.14 0.00 0.14 0.00

21 σλw Wage markup vol. 0.32 0.01 0.2183 0.00 0.32 0.01 0.32 0.00

22 σb Demand shock vol. 0.0031 0.0003 0.0025 0.0002 0.0032 0.0001 0.0032 0.0000

23 σπ* Inflation target vol. 0.19 0.01 0.0011 0.00 0.18 0.00 0.18 0.00

24 σα/α RRA volatility/RRA mean 0.34 0.01 0.2845 0.03 0.36 0.01 0.37 0.02

25 σπ,z corr(pi*,tech.) -0.15 0.00 N/A N/A -0.18 0.00 -0.19 0.00
26 αSS Mean risk aversion 23.46 0.34 6.9292 2.14 21.28 0.78 20.92 0.87

27 σyields Bond measurement errors (bp) 16.72 0.64 N/A N/A 16.09 0.56 17.11 0.00

28 R* Steady-state risk-free rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 θp Price markup MA 0.37 0.01 0.3501 0.01 0.36 0.01 0.36 0.00
30 θw Wage markup MA 0.36 0.01 0.49 0.02 0.37 0.01 0.34 0.00

31 σπ,µ corr(pi*,inv.) N/A N/A N/A N/A -0.05 0.01 -0.05 0.00

32 σπ,α corr(pi*,RRA) N/A N/A N/A N/A 0.06 0.01 0.06 0.00

Note: Priors, posterior mode, and percentiles of the posterior distribution from the benchmark model.

No bonds in 

estimation

π* correlated with µ 

and α shocks

π* correlated with µ and α 

shocks; flat prior on ρµ, 

ρλw, and ρλp



Figure 1. Data series for estimation

Note: No variables are detrended. GDP, consumption, and investment are obtained from the BEA. Compensation per hour, 

and inflation are obtained from the BLS. Hours worked is obtained from Valerie Ramey's website. The one-quarter yield is the 

Fama risk-free rate. The ten-year yield is from Gurkaynak, Sack, and Wright (2006).
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Figure 2. Bond yield errors

Note: each axis plots the measurement errors in basis points for one of the bond yields. Errors are measured from the Kalman-filtered estimates at the posterior mode.
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Figure 3. Steady-state nominal bond yields

Average empirical yields (spread=2.07)

Steady-state
yields (spread=1.91)

Note: The solid black line gives the yield curve at the model's steady state; the grey lines are for the model with constant risk aversion and where the inflation target is 
unaffected by shocks to labor-neutral technology. The other parameters are not reestimated. All the lines are normalized to match the 10-year yield  exactly, so the plot 
measures steady-state spreads. Boxes are average sample yields. The grey area is the 95% confidence band for the average yields relative to the 10-year yield, calculated 
using the Newey–West method with 6 lags. The solid black line gives the yield curve at the model's steady state, normalized to match the 10-year yield exactly.
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Figure 4. Expected returns and the term premium

Note: The top panel plots expected returns on a 10-year nominal bond over the following quarter in excess of the one-quarter 

nominal interest rate, annualized. The non-structural forecast is from a VAR(1) using the 1-quarter, 5-year, and 10-year bond 

yields. The thin gray line is the realized four-quarter return on a 10-year Treasury bond. The term premium in the bottom panel is 

defined as the gap between the 10-year yield and the average of expected 1-quarter yields over the next ten years.
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AAA

Figure 5. Responses of term structure factors to orthogonalized shocks

Note: responses of each of the term structure factors to the orthogonal structural shocks. Specifically, the inflation target in this plot is not affected by shocks to labor-neutral technology. The level factor is the average of 

the 1-quarter, 5-year, and 10-year yields. The slope factor is the gap between the 10-year and 1-quarter yields. Curvature is the sum of the 5-year and 1-year yields minus twice the 3-year yield. The shocks are all unit 

standard deviations. All scales in each row are identical and are measured in annualized percentage points.
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Figure 6. Responses of interest rates to an investment technology 

shock
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Figure 7. Responses to technology and risk-aversion shocks

Note: responses in a unit standard deviation increase in labor-neutral technology and a decrease in risk aversion. 
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Figure 8. The Hansen–Jagannathan bound and the term spread
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Note: each section of a bar represents a fraction of the variance of one of the series at frequencies between 6 and 32 quarters. 

The far-right column gives a variance decomposition for investment growth in the JPT model (bonds excluded from the 

estimation; constant risk aversion and inflation target) instead of the benchmark model used in the left-hand columns.

Figure 9. Variance decompositions at business-cycle frequencies 
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