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Abstract

This paper builds on the production-based asset pricing literature to generate return pre-

dictability in general equilibrium. The model embeds habit formation into Epstein—Zin prefer-

ences to generate movements in risk aversion. In a production setting, it generates predictable

equity returns and realistic consumption dynamics —R2s in return forecasting regressions match

empirical results at both short and long horizons, while consumption growth is unpredictable.

Empirically, a novel model-implied forecast of equity returns yields an R2 of 50 percent at the

five-year horizon in post-war data. The model can be used to study the effects of time-varying

risk premia on the macroeconomy.

1 Introduction

Stock prices are more volatile than can be explained by movements in expected dividends, while

excess returns on the aggregate stock market are predictable over time. The two phenomena are

connected: changes in the discount rates applied to future dividends can induce excess volatility in

asset prices.1 This paper develops a new preference specification with time-varying risk aversion

that generates realistically predictable and volatile stock returns. Its contribution to the large

production-based asset pricing literature is to improve the fit of the model to return forecasting

∗I appreciate helpful comments from Jason Beeler, Eduardo Davila, David Laibson, Lars Lochstoer, Kelly Shue,
Eric Swanson, Tomasz Strzalecki, Luis Viceira, seminar participants at Cornell, Harvard, MIT, the Federal Reserve
Bank of New York, Stanford GSB, Haas, Sloan, Wharton, Stern, Olin, Booth, Fuqua, the Federal Reserve Bank of
San Francisco, and the Texas Finance Festival, and, especially, my advisers, John Campbell, Effi Benmelech, and
Emmanuel Farhi.

1Grossman and Shiller (1981); Leroy and Porter (1981); Shiller (1981).
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results while maintaining previous successes in matching other features of the economy. While there

are many models that can generate volatile risk premia when the consumption process is taken as

exogenous, the innovation of this paper is to develop a habit-formation specification that delivers

realistic results in a production setting with endogenous consumption choice.

A first goal of consumption-based asset pricing is to find a utility function that is consistent

with the behavior of asset prices. That is, given a consumption process, a utility function should

lead to high and volatile equity returns.2 If we find such a utility function, the next question we ask

is whether the consumption process we observe empirically is actually consistent with that utility

function. That is, would agents with the proposed utility function choose to save and consume

(and work and take leisure) in ways consistent with what we observe historically? So the second

goal of consumption-based asset pricing is to find a utility function that endogenously generates

both realistic asset returns and consumption dynamics. That second goal is one of the reasons for

the existence of the production-based asset pricing literature.

There is now a large literature that studies the behavior of asset prices in general equilbrium

models.3 While that literature has had many successes, it has generally not focused on predictability

in aggregate asset returns, even though empirical work finds that a large fraction of the variation

in asset prices is driven by shifts in expected returns.4 The goal of this paper is to develop a model

that can explain the observed predictability of equity returns while preserving the successes of the

previous literature in matching the basic behavior of the real economy, such as the volatilities of

output, consumption, and investment growth.

The standard model of time-varying risk aversion is the habit specification of Campbell and

Cochrane (1999).5 In their model, when a person’s consumption approaches her habit, her risk

aversion rises. Using aggregate consumption data, Campbell and Cochrane find that their implied

risk aversion measure can explain a large proportion of the movements in the price-dividend ratio

on the stock market.
2This is essentially the question Mehra and Prescott (1985) ask.
3Particularly relevant to this paper are Jermann (1998), Lettau and Uhlig (2000), Tallarini (2000), Boldrin,

Christiano, and Fisher (2001), Rudebusch and Swanson (2008), Guvenen (2009), Campanale, Casto, and Clementi
(2010), De Graeve et al. (2010), and Gourio (2012), but there are many others.

4Gourio’s (2012) model of time-varying disaster risk is the only published paper that generates R2s in return
forecasting regressions that are as large as we observe in the data.

5Other early papers studying habit formation include Abel (1990), Constantinides (1990), Jermann (1998), and
Boldrin, Christiano, and Fisher (2001).
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Campbell and Cochrane (1999) and other habit-formation models take an important step for-

ward in that they are able to generate high and volatile risk premia (unlike power utility) under

the assumption that consumption growth is i.i.d.. But in production settings, Campbell—Cochrane

preferences imply that consumers strongly smooth consumption growth, leading to a consumption

growth process that is far from i.i.d..6 Moreover, since the consumption process with production is

no longer what Campbell and Cochrane assumed it to be, risk premia in the production economy

are not nearly as high or volatile as in their original endowment economy. Those problems are

pervasive with models of habit formation, appearing also, for example, in Boldrin, Christiano, and

Fisher (2001) and Jermann (1998).

The basic innovation of this paper is to embed the useful intuition in the previous literature–

that persistent external habits can induce time-varying risk aversion– into generalized recursive

preferences (Kreps and Porteus, 1978; Epstein and Zin, 1989; Weil, 1989). The Epstein—Zin spec-

ification permits the separate modeling of risk aversion and intertemporal substitution, while the

Campbell—Cochrane intuition motivates time-variation in risk aversion. By separating variation

in risk aversion from intertemporal substitution, the model resolves the usual problem of excess

smoothness in consumption growth in models with strong habit formation.7

In the model, consumers have a time-varying external habit that is a benchmark to which they

compare their own lifetime utility. That is, the habit is in the continuation value instead of current

consumption. The higher is lifetime utility above the benchmark, the lower is risk aversion over

proportional shocks to future welfare. I refer to the new preference specification as the EZ-habit

model for its combination of these two frameworks. The basic mechanism, that bad news about

wealth or future income raises risk aversion, is consistent with micro evidence from a range of

studies discussed below on portfolio choice and measures of risk aversion from lab experiments.

The simple real business cycle (RBC) model with fixed labor supply provides a transparent

laboratory in which to study the effects of time-variation in risk aversion on the macroeconomy

in general equilibrium. I find that the dynamics of real variables and real interest rates under the

EZ-habit specification are highly similar to a model with Epstein—Zin utility and constant relative

6See Lettau and Uhlig (2000) and Rudebusch and Swanson (2008). I also replicate their results in this paper.
7While it is obviously possible to reduce the smoothness of consumption growth by reducing the importance of

the habit, that also reduces the size and volatility of the equity premium, bringing the model closer to simple power
utility.
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risk aversion, unlike Campbell—Cochrane preferences. The model can match both the short- and

long-run variances of output, investment, and consumption growth.

In addition to matching macro moments, the EZ-habit preferences improve the fit of the RBC

model to financial moments. Previous habit-based models designed to generate high or volatile

risk premia tend to have implausibly volatile interest rates, a flaw not found here.8 The reasonable

behavior of interest rates is an important innovation: the EZ-habit model has stable interest rates

but still generates substantial asset price volatility because it has variation in discount rates on

risky assets that is driven by variation in risk aversion. Movements in discount rates imply that

asset returns should be predictable, and extensive tests show that the degree of predictability in

the model is similar to what is observed in the data.

Variation in risk aversion not only raises the volatility of asset returns, it also increases the

equity premium by roughly one third on average. The reason is that when risk aversion is high,

lifetime utility is low. Since the volatility of the pricing kernel under Epstein—Zin preferences

depends on the volatility of lifetime utility, variation in risk aversion increases the volatility of the

pricing kernel and hence risk premia.

There are numerous empirical methods of forecasting stock returns, but most are not based

on equilibrium theories. For example, regressions of stock returns on price-dividend ratios are

motivated simply by an identity that links the price-dividend ratio to future returns and dividend

growth. Under the EZ-habit model, though, risk aversion can be measured directly. Using data

on consumption and wealth, I construct an empirical estimate of risk aversion and show that it is

a strong forecaster of aggregate stock returns: it outperforms the price-dividend ratio, Lettau and

Ludvigson’s (2001) measure of the consumption-wealth ratio, and Campbell and Cochrane’s (1999)

excess consumption ratio. Because it does not rely on an unobservable latent process to drive risk

premia, this result differentiates the EZ-habit model from models of time-varying disaster risk.9

I also provide novel evidence that shocks to productivity forecast future stock returns, which is

consistent with the EZ-habit model but not time-varying disaster risk.

In addition to matching the predictability of returns, the model also matches forecasting results

for consumption growth. Lettau and Ludvigson (2001) find little ability to forecast consumption

8See, e.g., Jermann (1998) and Boldrin, Christiano, and Fisher (2001).
9See, e.g., Gourio (2012), and Wachter (2010).
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growth using their measure of the consumption-wealth ratio. Campbell and Shiller (1988) obtain

similar results for dividend growth. As in the empirical data, it is essentially impossible to forecast

consumption growth in the EZ-habit model using the consumption-wealth ratio or interest rates.

In addition to helping a simple RBC model match the basic features of the real economy and

asset markets, the EZ-habit model is useful for giving a mechanism with which future papers

can study the linkages between risk premia and the real economy. It provides a plauisible and

quantitatively realistic description of variation in risk premia, which can in the future be studied, for

example, in models with more complex models of innovation and production to further understand

how shifts in risk premia over time affect the real economy.

The paper is organized as follows. Section 2 discusses the preference specification and lays out

the economic environment. Section 3 calibrates a production economy and compares its behavior

to the data. Section 4 tests the empirical implications of the model for return forecasting, and

section 5 concludes.

2 The model

2.1 Preferences

For an agent with a constant elasticity of intertemporal substitution (EIS), Epstein—Zin (1989)

utility can be expressed as

Vt =
{

(1− exp (−β))C1−ρt + exp (−β)
[
G−1 (Et [G (Vt+1)])

]1−ρ}1/(1−ρ)
(1)

for a function G, where Ct is consumption and Et is the expectation operator conditional on

information available at date t.10 The term G−1 (Et [G (Vt+1)]) is a certainty equivalent. When

there is no uncertainty about Vt+1, G−1 (Et [G (Vt+1)]) = Vt+1. The usual choice for G (going back

to Weil, 1989, and Epstein and Zin, 1991) is power utility,

GPower (Vt+1) = V 1−αt+1 (2)

10The preferences can be further generalized to study alternative time aggregators, instead of the constant elasticity
of substitution form.
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Epstein and Zin (1989) show that risk aversion for an agent with preferences of the form (1) depends

on the coeffi cient of relative risk aversion for G, while the EIS is equal to 1/ρ.

Now consider a habit-formation utility function for G,

GHabit (Vt+1;Ht) = (Vt+1 −Ht)
1−α (3)

Certainty equivalent functions involving GHabit are related to those using GPower in the same way

that usual habit specifications, for example, Constantinides (1991), are related to time-separable

power utility. Rather than caring only about the absolute level of their continuation utility, GHabit

says that agents care about the spread between continuation utility and a benchmark Ht. Because

the utility function adds a habit to Epstein—Zin, I refer to it as the EZ-habit specification.11 I refer

to the version of Vt using GPower for the certainty equivalent as EZ-CRRA.

The coeffi cient of relative risk aversion for GHabit is equal to α Vt+1
Vt+1−Ht . As the spread between

lifetime utility and the habit rises, the coeffi cient of relative risk aversion falls. Intuitively, when the

continuation value falls close to its benchmark, proportional shocks to Vt+1 loom much larger than

when the agent has a cushion between his continuation value and Ht. If Ht varies slowly over time,

then innovations to risk aversion depend on innovations to lifetime utility. Risk aversion in this

model is thus dependent on news about the future, in particular news about future consumption

growth (either its level or its higher moments). In this regard it is rather different from Campbell

and Cochrane (1999) and other previous habit setups, where risk aversion depends only on current

and past shocks to consumption growth.

GHabit has three important drawbacks. First, if the support of the shocks to Vt+1 is suffi ciently

wide, there is a non-zero probability that Vt+1 will fall below Ht, leaving the certainty equivalent

undefined.12 To operationalize GHabit, then, we need to augment the model to ensure that Vt+1

cannot fall below the habit. Second, because GHabit is not log-linear in Vt+1, obtaining simple

analytic results with it is diffi cult or impossible. Third, also because GHabit is not log-linear,

11Other papers, e.g., Rudebusch and Swanson (2010) and Yang (2008), incorporate consumption habits into
Epstein—Zin preferences. That is, the C1−ρ

t term is replaced by (Ct −Xt)
1−ρ where Xt is the habit. Rudebusch

and Swanson (2008) show that in general equilibrium this does not lead to a time-varying Sharpe ratio because
households endogenously smooth consumption to reduce their overall risk exposure.
12This issue also arises in other habit specifications. When models are solved with standard perturbation methods,

the problem is simply ignored. I use a more precise global numerical solution technique that forces me to grapple
with the problem.
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standard arguments for the existence of a representative agent when agents have different wealth

do not apply.13 With GHabit, we need to use a more trivial sort of aggregation in which every agent

has the same level of wealth and faces identical shocks.

All of that said, the results in the remainder of the paper go through using GHabit (as long

as we take suffi cient steps to ensure that Vt+1 cannot fall below the habit). For the sake of both

theoretical and numerical tractability, though, I replace GHabit in the remainder of the paper with

the convenient and tractable alternative

GTVt (Vt+1) = V 1−αtt+1

αt = α
V A
t

V A
t −HA

t

(4)

where superscriptA denotes an aggregate variable and TV stands for time-varying. GTV (−1)t

(
EtG

TV
t (Vt+1)

)
is a second-order approximation to Ghabit(−1)

(
EtG

Habit (Vt+1;Ht)
)
around the non-stochastic ver-

sion of the model.14 Moreover, the appendix shows that in the continuous-time limit (i.e., under

stochastic differential utility), preferences with GTV are exactly equivalent to preferences using

GHabit, regardless of the process driving lifetime utility or the habit.15 GTV is locally equivalent to

GHabit in terms of risk preferences, but it solves the problems of integrability inside the certainty

equivalent and the existence of a representative agent.

As in Campbell and Cochrane (1999), I assume that agents take the excess welfare ratio, V At
V At −HA

t
,

and hence the coeffi cient of relative risk aversion, αt, as external to their own decisions. The final

step, then, is to specify a dynamic process for risk aversion. I assume a simple log-linear process,

similar to Campbell and Cochrane (1999),

αt+1 = φαt + (1− φ) ᾱ+ λ
(
∆vAt+1 − Et∆vAt+1

)
(5)

where vAt is the log of V A
t for the representative agent. Intuitively, when lifetime utility unex-

13A representative agent may exist, but her preferences need not actually look like the preferences of any particular
agent. Ideally, if every agent has identical preferences, the representative agent will also have those preferences.
14More precisely, the second-order approximation also assumes no growth. Adding a constant growth rate µ to V

would change the result to αt = α (1+µ)Vt
(1+µ)Vt−Ht

. The remainder of the analysis is identical.
15Melino and Yang (2003) study a utility function with the same form as GTV , but they take αt as a latent variable

and give no theoretical motivation for its variation. This paper is original for proposing inserting habits into the
certainty-equivalent part of Epstein—Zin preferences to motivate movements in αt and studying the central role of
endogenous consumption choice.
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pectedly rises, it moves away from the habit and risk aversion falls, so λ < 0. Movements in the

habit, and hence risk aversion, depend on aggregate welfare so that they are not affected by an

individual agent’s decisions. The AR(1) specification for risk aversion is approximately equivalent

to a specification where logHt is a geometrically weighted moving average of past values of vAt .

The key drawback of GTV with (5) is that it eliminates the interesting cross-sectional impli-

cations of GHabit. For example, under GHabit if a person receives a windfall compared to her

neighbors, she should become less risk averse. This paper is concerned with the aggregate impli-

cations of habit formation, so I use GTV for the sake of tractability and aggregation, but GHabit

may be of independent interest in future work, and it would allow for richer cross-sectional tests of

habit formation in the continuation value.

The appendix derives the marginal rate of intertemporal substitution (the stochastic discount

factor, or SDF) for the general form of Epstein—Zin preferences in (1). In the case of GTV , we end

up with the expression,

Mt+1 ≡
∂Vt/∂Ct+1
∂Vt/∂Ct

= exp (−β)
V ρ−αt
t+1(

EtV
1−αt
t+1

) ρ−αt
1−αt

C−ρt+1
C−ρt

(6)

with the only difference from the SDF under canonical Epstein—Zin preferences being the subscript

on αt. The SDF is a critical piece of the model because its volatility determines the price of risk

in the economy.16 As usual, changes in expected consumption growth or volatility will affect the

SDF through their effects on Vt+1. Changes in αt+1 (or Ht+1) will also affect the SDF in the same

way. Specifically, when the habit rises and agents are more risk averse, they penalize consumption

uncertainty more, driving Vt+1 down. High risk-aversion states thus have high state prices.

It is also straightforward to derive the standard result that

Wt = V 1−ρt Cρt / (1− exp (−β)) (7)

where Wt is the equilibrium price of a claim on the agent’s consumption stream, which I call the

aggregate wealth portfolio. This formula holds regardless of whether risk aversion varies over time,

16Hansen and Jagannathan (1991) show that the maximum Sharpe ratio (expected excess return divided by stan-
dard deviation) attained by any asset in the economy is equal to the standard deviation of the SDF divided by its
mean.
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and leads to the familiar result from Epstein and Zin (1991),

Mt+1 = exp (−β)
1−αt
1−ρ

(
Ct+1
Ct

)−ρ 1−αt
1−ρ

R
ρ−αt
1−ρ
w,t+1 (8)

where Rw,t+1 is the return on the wealth portfolio.

2.2 Discussion and micro evidence

The EZ—habit model is an extension of standard habit-based preferences. Rather than consumers

having a habit level of consumption that they target, it assumes they have a habit level of lifetime

utility. Because equation (7) shows that there is a direct link between lifetime utility and wealth,

we could also think of the model as saying that agents have a benchmark level of wealth. The

house-money effect of Thaler and Johnson (1990) has a somewhat similar intuition. Through lab

experiments, they find that subjects who have recently gained money in betting games play more

aggressively, consistent with the EZ-habit model.17

Abel (1990) interprets habits in consumption as a "keeping up with the Joneses" effect. That

intuition extends to the EZ-habit model. What agents try to keep up with in this model, though,

is fundamentally different. For example, consider a college senior who is trying to decide between

following her friends into consulting versus getting a law degree. With the J.D., she knows that in

the short run her consumption will be lower than that of her friends, but in the long run she will

likely be better off. In a model with an external consumption habit, three years of consumption

below that of her friends looks painful. But when the habit appears as a function of lifetime utility,

the student is comfortable giving up consumption in the short run as long as she knows she will do

well compared to her friends in the long run. Because the habit appears only in the risk aggregator,

an agent with EZ-habit preferences is willing to substitute consumption over time in a way that an

agent with standard habit-forming preferences is not. For the same reason, the EZ-habit model is

not inconsistent with the mixed evidence on the effects of classic consumption habits at the micro

level (e.g., Dynan, 2000).

A number of papers use financial investment choices to measure variation in risk aversion.

17Barberis, Huang, and Santos (2001) embed the house-money effect in a full asset-pricing model. See Gertner
(1993) and Post et al. (2008) for evidence on the house-money effect from game shows.

9



Carroll (2002) and Bucciol and Miniaci (2011) find that investors with higher wealth tend to tilt

their portfolios towards more risky assets. While Brunnermeier and Nagel (2008) argue that inertia

is the dominant feature of behavior in portfolio choice, Calvet, Campbell, and Sodini (2009), after

controlling for inertia effects, find a strong and significant relationship between innovations to wealth

and the riskiness of an investor’s portfolio. Calvet and Sodini (2010) show that higher past income,

controlling for current wealth and genetic differences in risk attitudes, is also negatively related to

the share of household portfolios invested in risky assets. Last, Paravisini, Rappoport, and Ravina

(2013) find that investors in Lending Club choose less risky portfolios following negative shocks

to their local home prices. Overall, then, with the notable exception of Brunnermeier and Nagel

(2008), the empirical literature supports the idea that increases in wealth reduce risk aversion.

In addition to the portfolio-choice literature, there are numerous papers that measure variation

risk preferences more directly. Guiso et al. (2013) find in a sample of Italian bank customers that

aversion to hypothetical gambles rose following the financial crisis. Similarly, Cohn et al. (2013) find

that when financial managers are primed to think about past negative market outcomes, they tend

to choose less risky portfolios in a lab setting (where they were able to choose to gamble roughly

$220 of their own money). Furthermore, related papers find that general attitudes towards risk,

for example loss aversion or a desire for certainty, tend to rise following negative events, whether

they are financial losses (Tanaka, Camerer, and Nguyen, 2010), natural disasters (Cameron and

Shah, 2012), or violence in war (Callen et al., 2013).18 These studies, along with those on portfolio

choice, provide micro evidence consistent with the EZ-habit model that risk aversion rises following

shocks that reduce wealth, and thus lifetime utility. These changes occur due to both aggregate

and purely idiosyncratic events.

2.3 Production

Aggregate output is a function of the capital stock, Kt, and productivity At

Yt = A1−γt Kγ
t (9)

18Cohn et al. (2013) list a number of other citations in this area.
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The production function (9) can be thought of as Cobb—Douglas with labor supply held fixed at

unity.

The aggregate resource constraint is

Kt+1 = (1− δ)Kt + Yt − Ct

where δ is the depreciation rate of capital.

For the benchmark calibration, productivity follows a random walk in logs,

logAt+1 = logAt + µ+ σaεt+1 (10)

εt+1 ∼ N (0, 1)

The drawback of using random-walk technology is that it is diffi cult to generate the degree

of volatility for output and investment that is observed in the data.19 I therefore also consider a

dual-shock version of the model that can match both the short- and long-run variances of output,

At = ĀtXt (11)

log Āt+1 = log Āt + µ+ σaεt+1 (12)

logXt+1 = φx logXt + σxεx,t+1 (13)

εt+1, εx,t+1 ∼ i.i.d. N (0, 1) (14)

Āt here is the permanent component of output, while Xt can be interpreted as a device to capture

forces that drive short-run fluctuations in output and consumption, such as shocks to monetary

policy or energy prices. I refer to the version of the model with random-walk technology as the

benchmark model, whereas the model with permanent and temporary technology shocks is the

dual-shock model.20

19 In particular, without a mean-reverting component, it is impossible for the model to replicate the result from
Cochrane (1994) that the long-run variance of output is smaller than the unconditional variance.
20Note that Xt does not represent any type of long-run risk shock. In Bansal and Yaron’s (2004) model, there is a

shock that has persistent effects on growth rates. Xt here has a persistent effects on the level of productivity. It has
no effect on the long-run variance of consumption growth.
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3 Calibration and simulation

I solve the model with projection methods, which entails fitting a polynomial approximation to the

decision rule and searching for coeffi cients so that the equilibrium conditions hold exactly at certain

specified points in the state space (see Judd, 1999). The Euler equation errors in the simulations

imply that agents misprice a claim on capital by uniformly less than 1/100th of one basis point

(i.e., one part in one million) over the range of the state space that the simulations visit, and the

median simulated error is an order of magnitude smaller.

The model is parameterized to match quarterly data. Table 1 lists the parameter values and

the target moments. Many of the parameters, such as the exponent on capital in the production

function, take standard values. I discuss here the parameters that are unique to this paper or do

not have standard and agreed-upon values.

I set ρ = 2/3 as in Bansal and Yaron (2004), for an EIS of 1.5. Bansal and Yaron note that

an EIS greater than 1 is necessary for increases in volatility to lower asset prices (specifically, the

wealth-consumption ratio) in an endowment economy. Similarly, an EIS greater than 1 ensures

that increases in risk aversion increase the expected return on the wealth portfolio and lower its

current price. Many studies attempting to estimate the EIS have obtained values much smaller

than 1 (Hall, 1988; Campbell and Mankiw, 1989). An important test of the model will be whether

it can match the empirical regressions even though the calibrated EIS is larger than 1.

I choose the variance of permanent innovations to technology to match the long-run variance of

consumption growth in the data. Since technology and consumption are cointegrated in the model,

the long-run variance of consumption growth is equal to the variance of the permanent technol-

ogy shocks. I estimate the empirical long-run variance of consumption growth with a third-order

univariate AR model (where the lag length was selected with the Bayesian information criterion)

and obtain a value of 0.00882. That is, the quarterly innovations to the permanent component

of consumption have a standard deviation of 0.88 percent. For the dual-shock model, I select

the parameters σx and φx to match the short-run volatility of consumption and output growth.

The parameters imply that the temporary component of technology has an unconditional standard

deviation of 2.7 percent.21

21Smets and Wouters (2007) estimate that the 1-quarter autocorrelation of stationary technology shocks is 0.95.
On the other hand, the one-quarter autocorrelation of detrended real GDP is 0.85. I take φx = 0.90 as the midpoint
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The persistence of risk aversion, φ, is set to match the empirical persistence of the price-dividend

ratio for the aggregate stock market, as in Campbell and Cochrane (1999). The mean and volatility

of risk aversion (ᾱ and, implicitly, λ) are chosen to match the average Sharpe ratio for the stock

market in the postwar sample and the degree of predictability observed using the price-dividend

ratio to forecast stock returns. Mean risk aversion is 14, and the standard deviation is set to 6.2.22

I simulate a broad range of models. The main comparisons are between the EZ-habit and the

canonical Epstein—Zin model with constant relative risk aversion (EZ-CRRA). I also report results

for Campbell—Cochrane (1999) preferences. Finally, I report results using the same basic produc-

tion setup as above but with adjustment costs in investment and habit formation in preferences

as in Jermann (1998). The appendix describes the details of the latter two models. The key dif-

ferences between the preferences used by Campbell and Cochrane (1999) and Jermann (1998) is

that the habit accounts for a much smaller fraction of consumption in Jermann’s calibration than

in Campbell and Cochrane’s.

The remainder of this section reports an analysis of the behavior of the EZ-habit preferences. I

begin with a comparison of basic moments across the models. I next examine in detail the degree of

predictability implied by the model. Third, I study impulse response functions to help understand

how the EZ-habit preferences change the dynamic response of the economy to shocks compared to

standard Epstein—Zin preferences. Finally, the last section examines whether the EZ-habit model

can match the empirical result that the EIS is usually estimated to be zero in aggregate regressions.

3.1 Comparisons across models

Table 2 reports basic moments from simulations of the five models along with corresponding values

from the data.

3.1.1 Real variables

The first row shows that all of the models are calibrated to match the long-run variance of consump-

tion exactly, which, under balanced growth, means that they also match the long-run variances of

between these two values.
22When αt < 0, I still use the standard Euler equation even though the household’s optimization problem is convex.

In the simulations, αt < 0 only 1.5 percent of the time. Treating households as if they are risk-neutral in periods
when αt < 0 (i.e., censoring αt at zero) has no discernible effect on the results.
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output and investment growth.

Rows 2 through 4 give the standard deviations of quarterly output, consumption, and investment

growth. Both the EZ-CRRA and single-shock EZ-habit models have volatilities for output and

investment growth that are well below the empirical values. As designed, the dual-shock model

rectifies this problem, matching both the short-run and long-run variances well. Both versions of

the EZ-habit model match the empirical variance of consumption growth.

For the real variables, the Jermann model displays behavior similar to that of the other models.

Campbell—Cochrane, however, is a notable outlier in terms of the standard deviation of consumption

growth. Column 5 shows, as observed by Lettau and Uhlig (2000), that Campbell—Cochrane habits

lead to much smoother consumption paths than what we obtain either under the weaker habits of

Jermann or the EZ-habit model.

To summarize, rows 1 through 4 show that the EZ-habit model can capture the basic un-

conditional moments of output, consumption, and investment. Unlike with Campbell—Cochrane

preferences, endogenous consumption growth is not excessively smooth —in fact, it is more volatile

than the standard Epstein—Zin model.

3.1.2 Financial variables

Rows 5 through 9 of table 2 summarize the financial side of the model and show that the EZ-habit

model improves substantially on the EZ-CRRA, Campbell—Cochrane, and Jermann setups.

Row 5 reports the Sharpe ratio on an equity portfolio. Equity is modeled in the simulations

as a levered claim on aggregate dividends. The leverage ratio is set to 2.4, which matches the

cointegrating parameter between consumption and dividends in the U.S. data.23

Row 5 shows that the EZ-habit model generates a realistic Sharpe ratio of 0.32, and one that

is higher by half than the 0.22 that we find with EZ-CRRA preferences. The higher Sharpe ratio

is due to the fact that bad states —when technology growth is low —are also high risk aversion

states in the EZ-habit model. Those states are thus doubly bad for lifetime utility: consumption is

low and the agent is more averse to the future uncertainty she faces. That increased variability in

lifetime utility leads to more variable state prices and hence higher Sharpe ratios (through a higher

23Specifically, if dividends are denoted Dt, the levered dividend is Dλ
t , where λ is the leverage ratio. The value

of λ I use is similar though somewhat smaller than the leverage ratio of 2.74 used for a consumption claim by Abel
(1999) and Gourio (2012), among others. Dividends are defined as total payments to capital.
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Hansen—Jagannathan (1991) bound). The EZ-habit model can thus generate substantially higher

risk premia for a given level of risk aversion than the EZ-CRRA model does.

A surprising result in row 5 is that the Sharpe ratio is only 0.07 for Campbell—Cochrane.

That model was designed to generate a high and volatile risk premium. But because consumers

endogenously choose such a smooth consumption path, the actual quantity of risk in the economy

is small. Specifically, in models based on power utility with a consumption habit, the pricing kernel

is,

Mt+1 = β

(
Ct+1 −Ht

Ct −Ht−1

)−α
(15)

In Campbell and Cochrane’s (1999) calibration (also used here), the habit is a very large fraction

of consumption on average (94.3 percent) so the effective coeffi cient of relative risk aversion is also

large. However, consumers endogenously choose a very smooth consumption path — a standard

result under habit formation.

There are thus two opposing effects: a large habit raises risk aversion, but it also drives agents to

endogenously smooth consumption growth. The latter effect turns out to dominate quantitatively.

With highly smooth consumption growth, Mt+1 has low volatility in the simulations, leading to

low risk premia (the same result previously obtained by Lettau and Uhlig, 2000, and Rudebusch

and Swanson, 2008). Jermann (1998) solves the problem of excess smoothness in consumption

growth by adding investment adjustment costs, but we will see below that that solution has the

fatal drawback that it leads to extremely volatile interest rates; in that model consumers demand

very high rates of return in order to accept a consumption process as volatile as we observe in the

data.

The EZ-habit model avoids the drawbacks of both the Campbell—Cochrane and Jermann se-

tups by separating risk aversion from intertemporal substitution. Unlike with models based on

power utility, shifts in risk aversion in the EZ-habit setup do not affect intertemporal substitution.

Moreover, because the pricing kernel is driven by shocks to both current and future consumption,

whether consumers endogenously smooth consumption growth or not has little effect on the pricing

kernel.

Rows 6 and 7 next report the size of the equity premium in the models. While the EZ-habit

model is clearly able to generate a high price of risk, the question is whether there is enough actual
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risk in equities to generate a realistically high equity premium. The two EZ-habit models generate

means and volatilities for returns that are far closer to the equity return observed in the data

than the EZ-CRRA model does. The mean equity premium rises from 0.9 to 4.1 percent per year

(compared to 6.8 percent in the data), while the standard deviation rises from 4.1 to 10.6 percent.

The intuition for that result is straightforward. After a positive technology shock, not only

do dividends rise, but discount rates fall since risk aversion falls. Prices thus rise through both

cash-flow and discount-rate effects, and the returns on the wealth portfolio and the levered dividend

claim are more volatile than under constant relative risk aversion, where there is only a cash-flow

effect.24

That said, the equity premium in the EZ-habit model is still 270 basis points smaller than in

the data. This paper does not include adjustment costs in investment for the sake of simplicity, but

we can see that in column 6, Jermann’s specification with adjustment costs does in fact yield equity

returns that are slightly more volatile than in the EZ-habit model (though only by 1 percentage

point).

Finally, rows 8 and 9 show that the EZ-habit model is able to generate reasonable behavior

for the risk-free rate. Specifically, it is low and stable, as in the data.25As mentioned above, the

Jermann model generates interest rates that are too volatile by an order of magnitude —the standard

deviation in the Jermann model is 10.20 percent, compared to 1.16 percent in the data (Boldrin,

Christiano, and Fisher, 2001, obtain a similar result).

3.1.3 Measures of predictability

The final three rows report measures of the predictability of consumption growth and excess equity

returns in the models. First, row 10 reports the mean small-sample correlation of 20-quarter excess

equity returns with the price/dividend ratio. The reported means are from 5000 simulations of

228-quarter samples. Under constant relative risk aversion, where the equity premium is nearly

constant, the population correlation is roughly zero. Small-sample bias, though, leads to -0.25 in

24LeRoy and Porter (1981) and Shiller (1981) argue that dividends do not seem suffi ciently volatile to explain the
volatility of stock prices. Grossman and Shiller (1981) suggest that variation in discount rates can explain this puzzle.
25 It is worth noting that the EZ-habit model generates a downward-sloping real term structure. This is consistent

with empirical findings by Evans (1998). Furthermore, Dew-Becker (2013) finds that when the EZ-habit preferences
are combined with a New-Keynesian model of the economy, they have no trouble matching the nominal term structure
of interest rates.
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table 2. The EZ-habit model strengthens the correlation to -45 percent and yields a degree of

predictability that is nearly identical to what we observe in the data. The degree of predictability

in the Campbell—Cochrane and Jermann models is quantitatively similar to that of CRRA and

half as large as it is in the EZ-habit model. We thus see, as expected, that time-variation in risk

aversion substantially increases the correlation between price/dividend ratios and future returns.

Row 11 reports the small-sample relationship between price/dividend ratios and future con-

sumption growth (calculated in the same way as in row 10). Under the EZ-habit model, the

predictive power of price/dividend ratios for future consumption growth is essentially zero, as we

observe in the data. Both the EZ-CRRA and Campbell—Cochrane models, on the other hand,

imply a large degree of predictability, with correlations 0.2 and 0.5, respectively, strongly at odds

with the data.

Finally, row 12 shows that we obtain a similar result when we look at the correlation between

interest rates and one-quarter-ahead consumption growth, which is one of the key implications of

the EZ-habit model. Because risk aversion varies over time, there is a time-varying precautionary-

saving effect (similar to the effect coming from stochastic volatility in Bansal and Yaron, 2004).

The movements in the precautionary saving effect drive the correlation between interest rates and

future consumption growth to nearly zero, as observed in the data. The other models in table 2,

Campbell—Cochrane and Jermann in particular, imply very strong forecasting power for interest

rates on one-quarter-ahead consumption growth, with correlations of 0.75 and -0.61, respectively.

To summarize, table 2 shows that the EZ-habit model can match a broad array of features of

the economy: the short- and long-run variances of output, consumption, and investment growth;

the means and standard deviations of the risk-free rate and Sharpe ratio on equities; and finally

three basic measures of the predictability of equity returns and consumption growth. None of the

other models examined here are able to match all of those features of the economy simultaneously.

3.2 Predictability in the simulated model

The primary reason to include time-varying risk aversion in the model is to generate predictability

in equity returns. While table 2 reports some simple measures of the degree of predictability, we

now study more closely how well the model can match observed predictability patterns at short

and long horizons.
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To give a benchmark for the amount of predictability observed empirically, table 1 plots R2s

from four separate univariate regressions of excess returns for the CRSP value-weighted index over

various horizons on different predictive variables: the log price-dividend ratio (e.g., Campbell and

Shiller, 1988, among many others); Lettau and Ludvigson’s (2001) measure of the consumption-

wealth ratio, cay; Campbell and Cochrane’s (1999) excess consumption ratio; and an estimate of

risk aversion derived from the EZ-habit model in section 4. For all four predictive variables, the

R2s generally rise as the sample length grows, and estimated risk aversion outperforms cay, excess

consumption, and the price-dividend ratio.

The gray line labeled "Simulated mean" gives the mean R2 from 5,000 regressions of excess

equity returns on the price/dividend ratio over 228-quarter spans in the benchmark simulation of

the single-shock model (the same length as the empirical sample).26 The upper gray line gives the

95th percentile of the simulations. As in the data, the simulated R2s rise as the horizon lengthens,

from 6 percent at the 1-year horizon to 31 percent at 10 years. The model compares favorably with

the empirical results for the price-dividend and excess-consumption ratios, with the simulated mean

tracking the empirical values closely. The empirical R2s for cay are higher, but still below the 95th

percentile of the simulations. The only variable that the simulations cannot match is estimated

risk aversion, but raising the volatility of risk aversion in the calibration would solve this problem.

The R2s generated here are substantially higher than those obtained in production models such

as Campanale, Castro, and Clementi’s (2010) model of time-varying first-order risk aversion and

Guvenen (2009) and De Graeve et al.’s (2010) studies of limited participation. Those papers obtain

R2s of 0.15 or less at the 5-year horizon, compared to 0.23 on average at the 5-year horizon for

the EZ-habit model. The population R2s are also essentially identical to those found by Wachter

(2010) and Gourio (2012) in endowment-economy and production-based models, respectively, with

time-varying disaster risk. Beyond them, no other models are able to generate this degree of

predictability with endogenous consumption growth in a production setting.

It is clear from table 2 and figure 1, then, that the EZ-habit model is able to both generate a

high price of risk (50 percent higher than Epstein—Zin with constant risk aversion) and a highly

volatile price of risk. R2s from simulated forecasting regressions are consistent with what we

observe empirically, and help generate large movements in asset valuations. Moreover, table 2

26The median of the simulations is highly similar to the mean.
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shows that while consumption growth is strongly predictable in the various other models studied,

it is essentially unpredictable in the EZ-habit model, as in the data.

3.3 Impulse response functions

To help understand the dynamics of the model, figure 2 plots impulse response functions (IRFs)

in the EZ-CRRA and benchmark EZ-habit models for four variables: consumption, lifetime utility,

the risk-free rate, and the Sharpe ratio on the consumption claim. The shock is a unit standard

deviation (88 basis-point) permanent increase in the level of technology, which leads to an identical

long-run increase in consumption, capital, and output.

The top-left panel shows the response of lifetime utility. For the EZ-CRRA model, lifetime

utility immediately jumps to a point just below its new steady state, and then slowly rises as

agents accumulate capital. For the EZ-habit model, though, lifetime utility actually overshoots its

new steady state. The reason is that the positive shock to productivity drives risk aversion down.

When agents are less risk-averse, they place a higher value on their future consumption stream

because they penalize uncertainty less strongly.

The overshooting of lifetime utility in figure 2 helps increase the volatility of the SDF (equation

6), raising the Hansen—Jagannathan bound. The top-right panel shows that on the impact of a

shock, the Sharpe ratio in the EZ-habit model falls by 12.5 percent (as a fraction of its mean),

and then gradually rises again, with a half-life of 12 quarters. That is the effect that generates the

high degree of predictability in figure 1. The persistence of risk aversion is why the perdictability

appears stronger at longer horizons.

The bottom-left panel shows the dynamics of the risk-free rate. The initial response is nearly

identical for the two models. Since the size of the capital stock is essentially fixed in the short-run,

an increase in productivity directly increases the return on capital. The agent’s Euler equation

links the expected return on capital to discount rates, so since the change in the return on capital

is the same in the two models, the change in interest rates is also. Unlevered capital itself is a

relatively low risk investment, so movements in risk aversion have little effect on capital discount

rates. If capital were more risky, then we would expect the decline in risk aversion to lead to a

relatively larger increase in investment and a smaller increase in consumption following the shock.

The final panel of figure 2 shows the response of consumption in the two models. The EZ-habit
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model shows a larger initial response of consumption, with lower expected consumption growth

going forward. To see why this is, we can write consumption growth in a log-linearized version of

the model as

Et∆ct+1 = c̄+ ρ−1rf,t+1 + αt × vol (16)

where rf,t+1 is the risk-free interest rate between dates t and t + 1, vol represents a measure of

the total volatility in the model (which is fixed), and c̄ is a constant. αt × vol represents the

precautionary saving effect and is a function of the current level of risk aversion and the variances

of the shocks in the model.

The standard interpretation in an endowment economy is that conditional on consumption

growth, a strong precautionary saving motive leads to a low risk-free rate. In a production setting,

though, it is the risk-free rate that is held roughly fixed because it is tied to the marginal product

of capital, which is hard to change quickly through investment. Conditional on the risk-free rate,

then, a small precautionary saving motive leads to lower expected consumption growth (more

consumption today, saving less for tomorrow). In the EZ-habit model, a positive technology shock

lowers risk aversion, and hence consumption rises more than in the canonical Epstein—Zin case.

This effect also serves to increase the volatility of the SDF, just as the higher response of lifetime

utility does.

Given the results in figure 2, it is straightforward to see what would happen in this economy if

there were a pure shock to the coeffi cient of relative risk aversion. Since the risk-free rate is tied

to the marginal product of capital, it would not move on the impact of a shock. The only effect

on real variables of a pure decline in risk aversion, then, is that agents would want a smaller buffer

stock of savings, so they would raise consumption and lower investment: shocks to risk aversion

look like simple consumption demand shocks.27

3.4 Estimating the EIS from interest rate regressions

The value of the elasticity of intertemporal substitution is controversial. Regressions based on

aggregate consumption and asset returns often find a very small EIS (Hall, 1988; Campbell and

27 If unlevered capital were suffi ciently risky, it is possible that a decline in risk aversion would actually raise rather
than lower investment. However, consumption and investment would always be driven in opposite directions. In a
New-Keynesian model with more frictions, however, they can be driven in the same direction.
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Mankiw, 1989).28 This result is in conflict with the calibration used here and in other recent

production-based asset pricing studies (Kaltenbrunner and Lochstoer, 2010; Gourio, 2012), which

assume that the EIS is greater than 1. The question is whether the EZ-habit model generates small

EIS estimates in regressions similar to those estimated in Campbell (2003) and elsewhere. Table 3

shows that the EZ-habit model can in fact match the results of empirical EIS regressions.

Standard aggregate EIS regressions start from a model in which the risk-free rate takes the form

Et∆ct+1 = b0 + ρ−1rf,t+1 (17)

where ρ−1 is the EIS and b0 is a parameter depending on the discount rate and underlying volatility

in the model (as above). This relation is straightforward to derive in an endowment economy with

homoskedastic consumption growth and in which agents have a constant EIS and coeffi cient of

relative risk aversion. It is also obtained in a log-linearization of the standard RBC model with

homoskedastic technology shocks. Note that equation (17) does not hold in the EZ-habit model;

equation (16) is the true equation (up to a log-linearization).

In the simulations of the model in section 3, we have the ability to directly measure Et∆ct+1.

The first row of table 3 reports the population estimate of ρ−1 in regression (17) using the true

expectation of consumption growth under the EZ-CRRA and EZ-habit models. In the EZ-CRRA

case, the regression identifies ρ−1 exactly, as it should. On the other hand, the estimate of ρ−1 is

only 0.64 in the benchmark EZ-habit model, far closer to the value of roughly zero in the data.

The bias comes from the fact that the time-varying precautionary saving effect from equation

(16) is omitted from the regression. Because precautionary saving is correlated with both expected

consumption growth and interest rates, omitting it biases the usual EIS regression (17). An alter-

native way to see the source of the bias is to go back to the IRFs in figure 2. In both models the

risk-free rate rises by the same amount following a shock. In the EZ-habit specification, though,

because of the decline in precautionary saving, expected consumption growth is lower following a

28Campbell (2003) reviews the literature and estimates the EIS using a variety of specifications and data from a
broad range of countries, finding values generally less than 0.5 and often less than 0.2. Vissing-Jorgenson (2002)
finds an EIS less than unity in micro data. On the other hand, Vissing-Jorgenson and Attanasio (2003) and Gruber
(2006) obtain larger estimates using micro data, both above unity. Gruber (2006) is particularly well-identified, using
variation in the capital income tax rate as the source of exogenous differences in the after-tax interest rate earned by
households.
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shock than in the EZ-CRRA case. That means that the estimate of ρ−1 must fall.29

The regression in the first row of table 3 is in some sense ideal, but it is not the regression that

we are actually able to run in the data since Et∆ct+1 is unobservable.30 Rows 2 through 4 report

results for estimates of ρ−1 from regressions of actual consumption growth, ∆ct+1, on the risk-free

rate, rf,t+1. Row 2 gives the population estimates, while rows 3 and 4 give the median and 95-

percent range of the estimates from 228-quarter simulations. With constant relative risk aversion,

the population regression in row 2 again estimates the EIS exactly. The median estimate from

the small-sample regressions in row 3 is 1.16. While the 95-percent range is wide, it only barely

contains the point estimate from the data. So it is in principle possible for the EZ-CRRA model

to generate an estimate of the EIS as small as what we observe in the data, but the probability is

small (less than 10 percent).

In the EZ-habit models, the bias in EIS regressions is far larger. The population estimate of the

EIS in the single-shock case is 0.56, and the median small-sample estimate is 0.03 —almost exactly

what we observe empirically. For the dual-shock model, the estimates are only slightly better:

the small-sample median estimate is 0.35. The EZ-habit model is thus able to closely match the

empirical fact that EIS estimated from aggregate regressions is near zero.

Given that in the model the bias in the EIS regressions comes from movements in risk aversion,

if we could observe αt we could completely eliminate the bias. The final three rows of table 3 try

to estimate the EIS including a control for risk aversion.

In the data, I use a measure of risk aversion derived from the EZ-habit model below in section

4, denoted α̂t. The empirical estimate of the EIS is essentially unchanged from when α̂t is not

included. In population, when αt is included in the simulated regressions, the EIS is estimated

exactly, as expected. In small-sample regressions, though, the estimate of the EIS in the model is

still biased downward. In the single-shock model, the median estimate is 0.07, and in the dual-shock

model 0.94. Row 7 shows, however, that the 2.5 percentile of the small-sample estimates is -3.08 in

29 In Bansal and Yaron (2004), time-variation in the volatility of shocks in principle causes EIS regressions to
be biased. However, Beeler and Campbell (2012) show that their calibration generates almost no actual bias– the
median sample EIS estimates are well above 1. This paper thus represents an improvement in being able to generate
a substantial bias in aggregate regressions without large movements in the conditional volatility of consumption.
30 In principle, the real risk-free rate, rf,t+1, is also unobservable in the data. As above, I form rf,t+1 as the

difference between the nominal three-month interest rate and a forecast of inflation based on lagged inflation and
nominal interest rates. Errors in the estimate of the true real-risk-free rate would bias the estimate of ρ−1 towards
zero. In theory, instrumental-variables methods can eliminate this bias.
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the dual-shock model, while the 97.5 percentile is 3.11. So even though the median estimate in the

dual-shock model is not enormously biased, the empirical value of 0.18 is well within the simulated

range. The reason for this result is that consumption follows nearly a random walk in the model,

so there is very little variation from which to identify the EIS. In the end, although controlling for

risk aversion should, in principle, allow us to estimate the EIS consistently, in small samples the

regressions still do not seem to provide useful estimates because of weak-identification problems.

To summarize, the EZ-habit model is robustly able to match the empirical facts that estimates

of the EIS from aggregate regressions of consumption growth on interest rates are near zero and

that consumption growth is essentially unpreditable.

4 Empirical return forecasting

This section shows that under the EZ-habit model we can estimate risk aversion empirically up

to an affi ne transformation, and that the estimated risk aversion proxy yields a strong forecast of

stock returns. In fact, the forecast is stronger than all the other empirical predictors I examine.

Moreover, I present novel evidence that shocks to TFP forecast future stock returns, as predicted

by the model.

The forecasting results differentiate the EZ-habit model from models with time-varying disaster

risk. Gourio’s (2012) model predicts that when the probability that there will be a disaster changes,

price-dividend ratios will forecast returns, which is also true in the EZ-habit model. But the EZ-

habit model also predicts that technology and estimated risk aversion will forecast stock returns,

and that estimated risk aversion will be the single most powerful forecaster of returns, which would

not be true in the time-varying disaster model or models based on other forms of time-varying

volatility. The evidence that estimated risk aversion and TFP shocks forecast returns thus argues

in favor of time-varying risk aversion over time variation in disaster risk.

4.1 Estimating risk aversion

Given the AR(1) process for risk aversion in (5), it is straightforward to measure risk aversion if

we simply observe the history of aggregate lifetime utility, vAt . For a given value of the EIS and

observed data on wealth and consumption, it is possible to calculate vAt by rearranging equation
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(7)

vAt =
1

1− ρw
A
t −

ρ

1− ρc
A
t +

1

1− ρ log (1− exp (−β)) (18)

That is, the lifetime utility of the representative agent depends on aggregate wealth and aggregate

consumption; if we can measure wealth and consumption, then we can measure lifetime utility. We

then simply plug the estimates of vAt into the recursion for risk aversion (equation 5) to obtain

estimates of αt.

The primary diffi culty with estimating aggregate wealth is that human wealth is not directly

observable. I follow Lettau and Ludvigson (2001) in using labor income as a proxy for human wealth.

Lettau and Ludvigson (2001) study a cointegrating relationhip between consumption, financial

wealth, and labor income. Although their analysis was designed to estimate the consumption-

wealth ratio, it also delivers, as a byproduct, a measure of aggregate wealth. I use that wealth

measure to construct the measure of vAt and hence risk aversion.

Assuming the price-dividend ratio for human wealth is stationary, labor income is a proxy for

human wealth. Denoting asset wealth as at and labor income as yt, the appendix shows that we

then have a cointegrating relation (the one used by Lettau and Ludvigson, 2001),

ct = ζωat + ζ (1− ω) yt + ξ′t (19)

where ζ and ω are parameters and ξ′t is a stationary error term. That is, consumption, asset

wealth, and labor income are jointly cointegrated (a result which holds in the production model of

the previous section). Lettau and Ludvigson (2001) refer to the residual ξ′t as cay. This variable

essentially represents an estimate of the consumption-wealth ratio. To measure wealth, then, we

simply define

ayt ≡ ωat + (1− ω) yt (20)

which, under the assumptions above, will be a statistically unbiased estimate of total wealth. So

our measure of aggregate wealth for use in equation (18) is a linear combination of asset wealth and

labor income, where the relative weights are obtained from the estimated cointegrating relationship.
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With our measure of wealth ayt, we estimate vAt as

v̂At =
1

1− ρayt −
ρ

1− ρct (21)

where we ignore the constant, and a circumflex indicates an estimated variable. To the extent

that there is measurement error in the consumption or wealth data, v̂At will inherit that same error.

When we use v̂At to forecast market returns, this measurement error should only weaken the results.

For measurement error to generate a spurious predictive relation, it would have to be correlated

with other predictors of returns.31

This definition of v̂At is similar to Lettau and Ludvigson’s cayt, except they have equal weights

on ct and ayt, whereas equation (21) uses a combination in which the weights depend on the EIS.

Also, cayt is stationary by construction, whereas v̂At is growing over time (it is cointegrated with

consumption and wealth).

In equation (21) a high EIS (low ρ) raises the weight on consumption relative to asset wealth.

If the EIS is less than 1 (ρ > 1), the weight on wealth, ayt, is actually negative, and the weight on

consumption is greater than 1. Bansal and Yaron (2004) and Kaltenbrunner and Lochstoer (2010)

both find that an EIS of 1.5 allows their models to fit asset pricing facts, so I use the same value.

This value is also consistent with the micro evidence of Vissing-Jorgensen and Attanasio (2003).

The results reported below are quantitatively similar as long as the EIS is greater than 1.1 (at that

level and below, v̂At becomes very volatile). The appendix reports a sensitivity analysis for various

values of the EIS.

Finally, I construct an estimate α̂t using the update process for risk aversion, equation (5), and

the data on v̂At ,

α̂t+1 = φα̂t + (1− φ) ᾱ+ λ
(
∆v̂At+1 − Et∆vAt+1

)
(22)

As above, I assume that φ = 0.96. Et∆vAt+1 is estimated simply as the sample average of ∆v̂At .
32

31One obvious source of measurement error is that human capital is not a perfect estimator of the value of human
wealth. Suppose risk aversion rises above average and lowers the price-dividend ratio on human wealth below average.
Labor income will then be overestimating human wealth (compared to its average). High levels of wealth drive our
measure of α̂t downward, so this measurement error should bias the results against correctly forecasting returns (high
risk aversion in the data leads to low risk aversion in our estimates). In simulations not reported here, though, this
effect is inconsequential.
32 In principle, it is possible to forecast ∆vAt+1, but the amount of predictability in ∆vAt+1 is suffi ciently small that

the results are nearly identical to assuming that vAt+1 simply follows a random walk. The appendix also shows that
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The parameter λ governs the volatility of αt, but it has only a multiplicative effect on α̂t. That

is, any two estimates of α̂t will be perfectly correlated, regardless of what values are chosen for λ.

The same argument applies for ᾱ. As long as we are simply trying to forecast stock returns using

a linear regression, we can ignore any additive or multiplicative shifts in α̂t. Therefore, I set ᾱ = 0

and choose λ so that α̂t has unit variance, normalizations that will not affect the regression-based

measures of forecasting power (and I choose a negative value of λ to match the habit-formation

motivation of the model). In the first period of the sample I assume α̂ = ᾱ.

An important feature of this method of forecasting is that it is based only on the preference

specification. No assumptions about the production side of the economy are required for this

method to be valid. We simply take advantage of the relation between lifetime utility and changes

in risk aversion and the relation under Epstein—Zin preferences between lifetime utility and wealth.

4.2 Forecasting market returns

The next question is to what extent the model-implied variation in expected returns is related to

actual returns. Figure 3a plots α̂t and five-year forward-looking excess returns on the stock market

(the value-weighted excess return from Kenneth French). The strong correlation between the two

series (0.68) is immediately apparent. Both high- and low-frequency movements in risk aversion

are associated with changes in expeted returns. For example, we see the broad pattern that risk

aversion is high from the late 1970’s to the early 1990’s, and future returns are also high in those

periods. At higher frequencies, we can see, for example, that the market decline and recession in

2000 and 2001 is associated with both an increase in risk aversion and an increase in future returns.

To see how the predictive power varies with horizon and compares with other variables, figure 1

plots R2s from regressions of future stock returns on α̂t, cayt, the price-dividend ratio (P/D), and

the excess consumption ratio from Campbell and Cochrane (1999). Each line gives the R2 from

a univariate regression. The x-axis gives the horizon for the return in quarters. The nth point is

the R2 from a regression of
∑n

j=1 rt+j on the predictor at time t. The regressions are all run on

quarterly data from 1952 to 2001 (to ensure that we have data for the 40-quarter regression). Each

regression uses the same sample for the predictors.

At every horizon, α̂ is dominant. At the five-year horizon, the R2 for estimated risk aversion

the results are robust to different choices for φ.
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peaks at 50 percent, nearly than twice that of the other variables. At ten years, the R2 is still

37 percent. Furthermore, in horse-race regressions (reported in the appendix), α̂ dominates the

strongest of the other variables, cay, at all horizons.

An important consideration in long-horizon forecasting regressions is that the residuals are

highly persistent. Kiefer and Vogelsang (2005) show that by using Newey—West standard errors

with a very long lag window, we can obtain test statistics with better size properties than techniques

that use a fixed (and usually short) lag window. I choose a lag window equal to half the sample size

and use the critical values reported in Kiefer and Vogelsang (2005). For cay, every regression except

for those with horizons greater than 30 quarters is significant at the 5 percent level. For α̂, the

largest p-value is 0.0008. The price-dividend ratio is significant at the 5 percent level for forecasts of

14 quarters or longer. In other words, these regressions all imply that we have substantial ability to

forecast stock returns in the postwar period, and α̂ is the strongest of the predictors. Out-of-sample

tests with both asymptotic and bootstrapped critical values give similar results (appendix D.3).

Appendix D examines the sensitivity of the results in this section to the various parameters that

are calibrated (e.g., the EIS and the persistence of habits). The basic results hold across a broad

range of parameter sets.

Figures 1 and 3 together show that the novel forecasting variable implied by the EZ-habit model

outperforms by a wide margin the other major return forecasting variables studied in the literature.

4.3 Forecasts from estimates of technology

The method of estimating the level of risk aversion studied above does not rely on any assump-

tions about the structure of production in the economy, being derived purely from the preference

specification. However, in the production model, changes in lifetime utility are closely related to

changes in productivity. If we can measure innovations to technology, then risk aversion should

follow an AR(1) process in which the innovations are equal to the shocks to the stochastic trend in

technology.

The literature on estimating aggregate technology shocks is extensive. I consider two methods

here. The first follows Solow (1957) and uses restrictions from a constant-returns production

function:

at = yt − γkt − (1− γ) lt (23)
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at measures technology if the economy has a Cobb—Douglas production function, with y denoting log

output, k log capital and l log labor supply.33 I also consider a simpler metric, labor productivity,

lpt = yt − lt. Labor productivity does not take into account the effects of capital accumulation

and simply models technology as the average product of labor. Capital can be diffi cult to measure,

whereas the number of hours supplied in the economy is a fairly concrete quantity (though the

quality of those hours is diffi cult to account for).34

To extract the stochastic trend from the two productivity series, I estimate univariate ARMA

models for each variable. The Bayesian information criterion implies that TFP growth is best fit

with an MA(2), while labor productivity growth should be treated as i.i.d. εTFPt is defined as the

residual in the MA(2), while εLPt is simply equal to labor productivity growth. That is, εTFPt and

εLPt are innovations to the Beveridge—Nelson (1981) trends in productivity.

In a log linearization of the production model, risk aversion follows an AR(1) process of the

form,

αt = (1− θ) ᾱt + θαt−1 + εXt (24)

where εX denotes a measure of the innovation to the stochastic trend of technology. We then have

two measures of αt, which I denote α̂TFP and α̂LP , using εTFPt and εLPt , respectively.35 The two

measures turn out to be highly correlated (93 percent).

The bottom panel of figure 3 plots five-year excess returns against α̂TFP and α̂LP . The two

series are both clearly highly correlated with future excess returns (0.45 and 0.48, respectively).

The p-values in regressions of quarterly excess returns on α̂TFP and α̂LP are 0.032 and 0.026

(using Kiefer, Vogelsang, and Bunzel, 2000, t-type-statistics to account for autocorrelation). The

relation among the three series is clearest around the turning points. Productivity growth begins

slowing down around 1970, driving risk aversion upwards. Forward-looking stock returns reach

33 I obtain highly similar results using the measure of total factor productivity suggested by Basu, Fernald, and
Kimball (2006).
34Furthermore, labor productivity determines the tradeoff that households face between consumption and leisure.

If the capital stock rises because foreigners want to invest more in the Uinted States, household welfare will increase
even if TFP does not. Similarly, a tax increase that reduced desired saving could lower welfare and labor productivity,
without affecting TFP. And welfare is the relevant input in estimating α̂t.
35Note that α̂TFP includes some forward-looking information because its construction requires the estimation of an

MA(2) on the full sample. α̂LP does not suffer from this flaw. In both cases we do have to estimate mean productivity
growth, but shifts in the estimted mean simply correspond to shifts in the mean of α̂t; they have no effect on its
dynamics. In regressions of returns on α̂t, the constant will thus always absorb shifts in ᾱ, so the estimation of the
mean of productivity growth is irrelevant for forecasting returns.
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their trough on nearly the same date. Productivity growth rises again starting in the mid-1990’s,

which is exactly when stock returns begin falling again.

The result that productivity forecasts equity returns is novel to this paper. It points to a direct

link from production and the real economy to stock returns. Perhaps more importantly, this result

is easily explained by the EZ-habit model, but is not predicted by models of time-varying disaster

risk. Figure 3b thus provides evidence in favor of the EZ-habit model over models of time-varying

disaster risk.

5 Conclusion

This paper presents a model of time-varying risk aversion. It simultaneously matches the basic

behavior of macroeconomic and financial aggregates, generating both a high and volatile equity

premium and a realistic degree of return predictability. The EZ-habit model gives a framework in

which consumption, output, and investment growth are all realistically volatile in both the short-

and long-run, consumption growth is nearly a random walk, and risk premia are high and volatile.

More generally, this paper provides a general framework for modeling time-varying discount

rates that can be used with other macro models. While I study a simple RBC model here, the

preference specification is highly tractable and allows models with more realistic descriptions of the

production side of the economy to also accommodate variation in risk premia. It is thus an advance

towards being able to study the interaction of financial markets and the real economy.

An obvious next step is to study the EZ-habit preferences in a richer setting. Dew-Becker (2013)

estimates a standard medium-scale DSGE model with sticky prices and wages, but with the added

feature that risk aversion varies over time, as here. Complementing the results in this paper on

equity pricing, Dew-Becker (2013) shows that the EZ-habit model, when augmented with a model

of inflation, can match the behavior of the nominal term structure well, generating a strongly

upward-sloping term structure of nominal interest rates and a volatile term premium.
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A The certainty equivalent

This section looks at the relationship between the certainty equivalents using Ghabit and GTV . I first show that
the two certainty equivalents are equal up to a second order approximation around the non-stochastic version of the
model. Next, I show that in the continuous-time limit, the preferences associated with the two certainty equivalents
are identical.

A.1 Second-order approximation

This section approximates the certainty equivalent G−1 (Et (G (Vt+1))) where Vt+1 = Vt × (1 + σεt+1) around the
point σ = 0. We assume that Etεt+1 = 0 and Etε2t+1 = 1.
Now consider the derivative of G−1 (Et (G (Vt+1))) with respect to σ,

d

dσ
G−1 (Et (G (Vt+1))) =

d
dσEt (G (Vt+1))

G′ (G−1 (Et (G (Vt+1))))
(A.1)

We have
d

dσ
Et (G (Vt+1)) =

∫
G′ (Vt (1 + σεt+1)) εt+1VtdF (εt+1) (A.2)

where F is the cdf of εt+1. Evaluated at σ = 0, d
dσEt (G (Vt+1)) = 0, and therefore d

dσG
−1 (Et (G (Vt+1))) = 0. So

all certainty equivalents taking this form are identical up to the first order in approximations around σ.
Next, consider the second derivative,

d2

dσ2
G−1 (Et (G (Vt+1))) =

[
G′
(
G−1 (Et (G (Vt+1)))

)]
d2

dσ2Et (G (Vt+1))−
[
d
dσEt (G (Vt+1))

] [
d
dσG

′ (G−1 (Et (G (Vt+1)))
)]

[G′ (G−1 (Et (G (Vt+1))))]
2

(A.3)
Since d

dσEt (G (Vt+1)) is equal to zero at σ = 0, we can ignore the second term in the numerator. The second
derivative of the expectation is

d2

dσ2
Et (G (Vt+1)) =

∫
G′′ (Vt (1 + σεt+1)) ε

2
t+1V

2
t dF (εt+1) (A.4)

At σ = 0, d2

dσ2Et (G (Vt+1))
∣∣∣
σ=0

= G′′ (Vt)V
2
t . We also have G′

(
G−1 (Et (G (Vt+1)))

)∣∣
σ=0

= G′ (Vt), and hence

d2

dσ2G
−1 (Et (G (Vt+1)))

∣∣∣
σ=0

=
G′′(Vt)V

2
t

G′(Vt)
. So any two choices of G, say G1 and G2 are equivalent up to the second

order if G
′′
1 (Vt)

G′1(Vt)
=

G′′2 (Vt)
G′2(Vt)

for any Vt. That relationship holds for Ghabit and GTV .

A.2 Continuous time

Duffi e and Epstein (1992) show how to extend Epstein—Zin preferences to continuous time. They derive a utility
function following the process

dVt = µt + σtdBt (A.5)

=

(
−f (ct, Vt)−

1

2
A (Vt)σtσ

′
t

)
dt+ σtdBt (A.6)

for a Wiener process dBt.
As in the main text, suppose the household’s certainty equivalent under discrete-time Epstein—Zin preferences is

G−1 (Et (G (Vt+1))). Duffi e and Epstein (1992) show that the analogous choice of A, obtained as a limiting case as
the length of time periods approaches zero, is A (Vt) = G′′(Vt)

G′(Vt)
. In the case where Gpower (Vt) = V 1−αt , we have

Apower (Vt) =
Gpower′′ (Vt)

Gpower′ (Vt)
=
−α
Vt

(A.7)



and for Ghabit = (Vt −Ht)
1−α

Ahabit (Vt) =
−α

Vt −Ht
(A.8)

For GTV = V 1−αtt ,

ATV (Vt) =
−αt
Vt

(A.9)

So GTV and Ghabit are identical if αt = α Vt
Vt−Ht , which is what is used in the text.

For all three choices of the certainty equivalent G, we can use the standard choice for f, f (ct, Vt) = β
1−ρ

c1−ρt −V 1−ρ
t

V −ρt

.

ρ then determines the elasticity of intertemporal substitution, while A determines risk aversion.

B Derivation of the SDF

We can obtain the stochastic discount factor (SDF) by calculating the intertemporal marginal rate of substitution.
We calculate two derivatives. First,

∂Vt
∂Ct

= V ρt (1− exp (−β))C−ρt (B.1)

Next, we differentiate Vt with respect to Ct+1 (w), where w denotes one state of the world, and πw is the probability
of that state,

∂Vt
∂Ct+1 (w)

= πwV
ρ
t exp (−β)R−ρt G

(−1)′
t (Et [Gt (Vt+1 (w))])G′t (Vt+1 (w))V ρt+1 (w) (1− β)C−ρt+1 (w) (B.2)

where G′t is the derivative of Gt and G
(−1)′
t the derivative of G−1t . Rt ≡ G−1 (EtGt (Vt+1)). The subscripts on Gt

refer to the fact that Gt depends on the potentially-time-varying parameter αt. The assumption that αt is exogenous
to the household is necessary for this formula for the derivative to be correct (in the same way that external habits
lead to a more tractable formula for the SDF than do internal habits).
The SDF can be derived from a consumer’s first order conditions for optimization asMt+1 (w) = 1

πw

∂Vt/∂Ct+1(w)
∂Vt/∂Ct

.
We then have

Mt+1 (w) = exp (−β)
G′t (Vt+1 (w))

G′t (Rt)

V ρt+1 (w)

Rρt

C−ρt+1 (w)

C−ρt
(B.3)

where the last line follows from the fact that G(−1)′t (x) = 1/G′t (x).
In the case of Gt (V ) = V 1−αt , the SDF becomes

Mt+1 = exp (−β)
V ρ−αtt+1 (w)

Rρ−αtt

C−ρt+1 (w)

C−ρt
(B.4)

B.1 Substituting in an asset return

Consider an asset that pays Ct as its dividend. We guess that its cum-dividend price isWt = V 1−ρt Cρt (1− exp (−β))
−1.

This guess can be confirmed by simply inserting it into the household’s Euler equation.
The return on the consumption claim is

Rw,t+1 =
Wt+1

Wt − Ct
=

V 1−ρt+1

exp (−β)Rt (Vt+1)
1−ρ

(
Ct+1
Ct

)ρ
(B.5)

Which yields

V ρ−αtt+1 (w)

Rρ−αtt

= (Rw,t+1 exp (−β))
ρ−αt
1−ρ

(
Ct+1
Ct

)−ρ ρ−αt1−ρ

(B.6)



We can then insert this into the SDF to yield

Mt+1 = exp (−β)
1−αt
1−ρ

(
Ct+1
Ct

)−ρ 1−αt1−ρ

R
ρ−αt
1−ρ
w,t+1 (B.7)

C Details of return forecasting

C.1 The method from Lettau and Ludvigson (2001)

If consumption and wealth are cointegrated, then we have the relationship

ct = ζwt + ξt (C.1)

where ζ is a parameter, and ξt is a mean-zero, stationary, and not necessarily i.i.d. error term. If we observed wealth,
ζ and ξt could be directly estimated. We do not observe wealth, though, especially the human component. Lettau
and Ludvigson (2001) therefore use the approximation

wt = ωat + (1− ω)hut (C.2)

where at is asset wealth and hut human wealth. This equation simply says that log aggregate wealth is equal to the
sum of log asset and human wealth. Since the level of aggregate wealth is equal to the sum of the levels of asset and
human wealth, the approximation is valid as long as the shares of asset and human wealth in aggregate wealth are
stationary not not too variable. The fact that labor’s share of income has been stationary in the post-war US data
makes this assumption reasonable.
Finally, we assume that labor income, yt, can be viewed as the dividend from human wealth and that the

dividend/price ratio for human wealth is stationary. That is,

yt = g + hut − µt (C.3)

where g is a parameter and µt is a mean-zero stationary bz,1 term. This implies that

wt = ωat + (1− ω) yt + (1− ω) g + µt (C.4)

ct = ζωat + ζ (1− ω) yt + ζ (1− ω) g + ζµt + ξt (C.5)

since ξt + ζµt is mean-zero and stationary, regardless of any correlation between ξt and µt, the variables ct, at, and
yt are jointly cointegrated. The parameters ζ, ω, and g can be estimated through standard methods for cointegrated
models. As Lettau and Ludvigson point out, the estimation is of these parameters is superconsistent, converging
linearly with sample size, so these parameters can be taken as known with certainty in any subsequent analyses (in
particular, stock return forecasts).
I follow Lettau and Ludvigson in referring to the cointegrating residual, ζµt + ξt = ct − ζωat − ζ (1− ω) yt −

ζ (1− ω) g as cayt, and I refer to ωat + (1− ω)× yt as ayt. ayt is an estimate of total wealth derived from data on
consumption, asset wealth, and labor income, taking advantage of an assumed cointegrating relationship between
the three variables. I estimate the parameters using standard maximum likelihood methods.

C.2 Sensitivity analysis for return forecasting

The results in section 4.2 depend on choices for two parameters —the EIS and the persistence of risk aversion. Tables
A3 and A4 report the ratio of the R2 for excess value to cay for 1, 5, 10, and 20-quarter returns across a variety of
choices for the EIS and the persistence of risk aversion.
Table A2 varies the EIS between 0.75 and 10. The numbers in bold represent points where cay outperforms α̂.

When the EIS is greater than 1, cay only ever outperforms at the 1-quarter horizon, and then only if the EIS is set
to 10. With an EIS less than 1, though, cay always has an R2 substantially larger that of α̂. Moreover, the sign on
α̂ in the return regressions flips. Intuitively, this is because in the construction of v̂, when the EIS is less than 1,
the weight on aggregate wealth is negative. The theory would predict that high risk aversion is associated with low
returns, but with the EIS less than 1, α̂ and future returns are actually positively correlated.



Table A3 presents R2 ratios for the same set of regressions, but now varying the persistence of risk aversion.
Across a fairly wide range of autocorrelations, α̂ outperforms cay at most horizons. The best performance is found
with an annual autocorrelation of 0.9, which corresponds to φ = 0.974. Even with an autocorrelation as low as
0.65 (φ = 0.9), though, α̂ performs nearly as well as cay. As with the EIS, the place where cay is most likely to
outperform is with 1-quarter returns. Table A4 lists R2s for cay, PE, and α̂ for pre and post-1980 samples.

C.3 Out-of-sample forecasting regressions

An alternative to the in-sample regressions studied in the main text is out-of-sample tests of forecasting power. I
consider the mean squared forecast bz,1 (MSFE) based tests from analyzed in Clark and McCracken (2001, 2005)
and Clark and West (2007).
Suppose we want to test whether a single variable, xt, forecasts stock returns, rt, against the null that rt is i.i.d.

(the methods used here apply to any null model that is nested; i.e. they are appropriate for asking whether xt has
marginal forecasting power when added to some other model). The forecast horizon can be any length. Therefore,
denote rt,t+j ≡

∑t+j
τ=t rτ .

We compare the residuals from the null model, e1t ≡ rt,t+j − β̂0,t (for an estimated constant mean β̂0,t using

data prior to date t) to the residuals from the alternative model, e2t,t+j ≡ rt,t+j − β̂0,t − β̂1,txt+j−1 (where β̂1t is a
constant regression coeffi cient estimates on the data from τ = 0 to τ = t − 1). The samples for the regressions are
begun after the first 20 percent of the sample.
The measure of the difference in MSFE is

ft,t+j ≡ e21t,t+j − e22t,t+j + (e1t,t+j − e2t,t+j)2 (C.6)

Under the null, the MSFE for the e1 model tends to be smaller than the MSFE for the e2 model because the e2
model has added noise due to the extraneous predictor. Intuitively, model e1 correctly imposes the constraint that
β1 = 0 under the null. The term (e1t,t+j − e2t,t+j)2 is essentially a correction for this effect.
When the forecast horizon is more than a single observation, ft,t+j is serially correlated. To correct for this, we

divide by a consistent estimate of its long-run variance (spectral density at frequency zero). Following Clark and West
(2007), I use the Newey—West measure with a lag window of 1.5×j. Denote this measure of the long-run variance as
S (ft,t+j) . The long-run variance corrects for the fact that the forecast bz,1 from overlapping samples will be serially

correlated. Clark and McCracken tabulate the critical values of the statistic
(

(T − j)
∑T−j
t=1 ft,t+j

)
/S (ft,t+j).

In the main text, α̂ is calculated using full-sample information. In particular, we need to calculate the cointegrating
relationship between consumption, labor income, and financial wealth. We also need to know the average growth
rate of value. For the out-of-sample forecasts, all of those parameters are estimated using only backward-looking
information. The only possible source of look-ahead bias here would be data revisions.
The top panel of figure A2 plots the values of the statistics using α̂t as the predictor against a null of a constant

expected equity for horizons from 1 to 20 quarters. We can easily reject the null at the 5 percent level at all horizons
and at the 1% level for 2—13 quarter horizons.

C.3.1 Bootstrapping

A major concern with predictive regressions is that asymptotic distribution theory is often a poor guide to small-
sample behavior. A simple way to deal with that concern is to use a bootstrap to construct confidence intervals for
the test statistics. I construct bootstrap samples in the following way. I select bootstrap samples of stock returns
and growth rates of consumption, asset wealth, and labor income. I then construct level series for consumption,
wealth, and income, and calculate α̂ using purely backward-looking information as above. Finally, I construct the
test statistic from above for each bootstrapped sample at each horizon from 1 to 20 quarters. I bootstrap 10,000
samples of data. The top panel of figure A2 plots the 95th and 99th percentiles of the bootstrapped test statistics,
and the out-of-sample forecasting power is still significant at the 5 percent level.

C.3.2 α̂ versus cay

We can also use the out-of-sample test to ask whether estimated risk aversion forecasts stock returns better than
cay. The null model is now one where stock returns depend on a constant and the lagged value of cay, and the



encompassing alternative adds the lagged value of α̂. The bottom panel of figure A2 plots the test statistics. At
every horizon, we can reject the null that α̂ does not improve the forecast using cay at the 5 percent level, and we
can reject the null at the 1 percent level at every horizon longer than 1 quarter.
Figure A2 also plots the statistic for a test of whether cay has any marginal predictive power above that of α̂.

At horizons shorter than 8 quarters, we cannot reject the null that it does not. At longer horizons, though, there is
evidence that both variables contain important information for forecasting stock returns.

D Alternative habit formation models

This section reports basic macro and financial moments for four alternative models that involve various types of habit
formation. In each case, I combine the preferences with an RBC model with random-walk technology calibrated as
in the main text.
The first model is Campbell—Cochrane (1999) preferences. The specific preference specification is

U (Ct) =
(Ct −Xt)

1−ρ

1− ρ (D.1)

st = log ((Ct −Xt) /Ct) (D.2)

st = (1− φ) s̄+ φst−1 + exp (−s̄)
(√

1− 2 (st − s̄)− 1
)

(∆ct − Et−1∆ct) (D.3)

where st is the excess-consumption ratio. The SDF is

Mt+1 = β

(
exp (st+1 − st)

Ct+1
Ct

)−ρ
(D.4)

I calibrate the preferences as in Campbell and Cochrane (1999), with ρ = 2, φ = 0.871/4, and s̄ = log (0.057).
The second model follows that of Jermann (1998). In this case, utility is

U (Ct) =

(
Ct − bC̄t−1

)1−ρ
1− ρ (D.5)

where C̄ is aggregate consumption. Jermann’s model also involves adjustment costs in investment, which I calibrate
as he does. The coeffi cient b is set to 0.82, and ρ = 5. This model thus has two key differences with Campbell and
Cochrane (1999): the habit is a smaller fraction of total consumption, and there are adjustment costs in investment,
which should make consumption growth and asset prices more volatile.



Table 1. Calibration

Parameter Value Target

γ 0.33 Capital income share

β 0.9975 2% annual real risk-free rate

δ 0.02 8% annual depreciation (BEA data)

µ 0.005 2% annual output growth

φ 0.94 Persistence of price/dividend ratio

ρ 0.67 A priori (see text)
σa 0.0088 Long-run standard deviation of consumption growth

mean(αt) 14 Mean Sharpe ratio (0.32 annualized)

stdev(αt) 6.2 Stock return predictability

σx 0.012 Variance of output growth

φx 0.9 Variance of output growth

Table 2. Comparison of preference specifications

1 2 3 4 5 6

Model: Data EZ-habit Dual-shock EZ-CRRA Campbell– Jermann

Real moments: Cochrane

1 Long-run SD(dC,dY,dI) (%) 0.88 0.88 0.88 0.88 0.88 0.88

2 StdDev(dY) (%) 0.99 0.59 1.03 0.59 0.59 0.59

3 StdDev(dC) (%) 0.46 0.47 0.56 0.28 0.15 0.38

4 StdDev(dI) (%) 2.65 0.83 2.37 1.11 2.21 1.32

Financial moments:

5 Mean SR (annualized) 0.32 0.32 0.32 0.22 0.07 0.17

6 Mean Rk (annualized %) 6.78 4.07 4.05 0.90 -0.13 1.14

7 StdDev(Rk) (annualized %) 21.19 10.67 10.65 4.11 4.48 11.66

8 Mean Rf (annualized %) 0.91 2.04 1.94 2.20 4.99 0.24

9 StdDev(Rf) (annualized %) 1.16 0.25 0.26 0.21 0.11 10.20

Predictability of consumption and returns

10 corr(dC(t),Rf(t-1)) -0.09 0.07 0.08 0.28 0.75 -0.61

11 corr(dC(t->t+20),PD(t-1)) -0.05 -0.04 0.01 0.21 0.52 0.04

12 corr(Rk(t->t+20),PD(t-1)) -0.41 -0.44 -0.35 -0.25 -0.25 -0.17

Note: Parameters used for the structural models. In table 2, the CRRA model uses with stdev(α)=0; the benchmark 

EZ-habit model (column 3) sets σx=0.

Note: All models with Epstein–Zin preferences are calibrated as in table 1, while the last two columns are calibrated as in the 

original papers. All variables are measured using quarterly values unless otherwise specified. dI is investment growth, dY output 

growth, and dC consumption growth. Rf is the risk-free rate (measured empirically as the nominal 3-month yield minus an 

inflation forecast), and Rk is the annualized return on a levered dividend claim (with a leverage ratio of 2.4). The long-run SD is 

the square root of the spectral density at frequency zero multiplied by 2π. SR is the annualized Sharpe ratio. The correlations in 

the final three rows use 20-quarter forward-looking consumption growth and equity returns. PD is the price/dividend ratio on 

the dividend claim. 



Table 3. Regressions estimating the elasticity of intertemporal substitution

Model: Data EZ-CRRA EZ-habit Dual-shock

1 Population, infeasible (Et[∆ct+1]) N/A 1.50 0.64 0.78

2 Population N/A 1.50 0.56 0.71

3 Small sample 0.14 1.16 0.03 0.35

4     [2.5%, 97.5%] N/A [0.03, 1.79] [-1.98, 1.02] [-1.32, 1.34]

5 Population, RRA control N/A N/A 1.50 1.50

6 Small sample, RRA control 0.18 N/A 0.07 0.94

7     [2.5%, 97.5%] N/A N/A [-3.08, 3.11] [-1.07, 2.78]
Note: Values reported are the coefficients from regressions of consumption growth or expected consumption 

growth on the risk-free rate. The dependent variable in row 1 is expected consumption growth (computed 

numerically in the simulations); all other rows use realized consumption growth. The small-sample regressions 

are based on 228 quarters of data, and median coefficient estimates are reported; 2.5 and 97.5 percentiles are 

reported in brackets. The RRA control is actual risk aversion in the simulations and estimated risk aversion 

(section 4) in the empirical regressions. 
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Note: R2s from univariate regressions of stock returns on various predictors. The forecast horizon is reported in quarters. Data for cay is obtained from 
Sydney Ludvigson's website; Price/dividend data comes from CRSP; the Campbell–Cochrane excess consumption ratio is computed using their 
parameter values and consumption data from the BEA. The gray lines give the mean and 95th percentile in the simulation of the EZ-habit model.



Figure 2. Impulse response functions

Note: Impulse responses for the EZ-CRRA and EZ-habits models. The shock is a positive unit-standard-deviation increase in technology. The dotted lines are for EZ-

CRRA, solid are for EZ-habit. All functions are reported as fractions of the variables' means except for the risk-free rate, for which the response is in annualized 

percentage points. Value is lifetime utility; the Sharpe ratio is for an asset that pays aggregate consumption as its dividend.
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Figure 3a. Estimated risk aversion and 5-year excess stock 

returns

5-year excess
stock returns

Estimated
risk aversion

Note: Excess stock returns are for the CRSP value-weighted index minus the risk-free rate. Returns are 
forward-looking five-year averages. Risk aversion is estimated from data on aggregate wealth and 
consumption and is normalized to have zero mean and unit variance.
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Figure 3b. Stock returns and estimates of  risk aversion from 
productivity growth

Five-year stock returns

Risk aversion 
from labor productivityRisk aversion 

from total factor productivity

Note: Total factor productivity is the quarterly Solow residual from John Fernald's website. Labor productivity is 
output per hour in the non-farm private business sector from the BLS. Risk aversion is an AR(1) with innovations 
equal to the (negative) innovations to the Beveridge–Nelson trend in productivity.



Differences: Mean Std. dev.    Scaled std. dev.

Capital -8.72E-04 0.00073 0.020

Cons. Growth 3.16E-08 0.00013 0.028

RRA 1.11E-02 0.75344 0.116

Sharpe Ratio -2.15E-03 0.00892 0.123

Table A2: Relative R2s for varying EIS

Span EIS=0.1 0.25 0.75 1.25 1.5 2 10

1 quarter 0.39 0.26 0.29 1.07 1.10 1.08 0.96

5 quarters 0.44 0.28 0.29 1.16 1.21 1.21 1.09

10 quarters 0.61 0.42 0.31 1.41 1.49 1.49 1.37

20 quarters 1.28 1.02 0.21 1.92 2.08 2.15 2.09

Table A3. Relative R2s for varying persistence of risk aversion

Span Autocorr.=0.95 0.9 0.85 0.8 0.75 0.7

1 quarter 0.86 1.27 1.10 0.90 0.75 0.64

5 quarters 1.03 1.44 1.21 0.97 0.78 0.64

10 quarters 1.17 1.73 1.49 1.20 0.99 0.82

20 quarters 1.24 2.24 2.08 1.76 1.48 1.27

Table A4. R2s from pre and post-1980 univariate return forecasting regressions

pre-1980 Estim. RRA cay P/D post-1980 Estim. RRA cay P/D

1q 0.10 0.10 0.03 1q 0.03 0.03 0.03

5q 0.28 0.22 0.25 5q 0.18 0.15 0.08

10q 0.27 0.16 0.27 10q 0.48 0.36 0.19

20q 0.38 0.13 0.39 20q 0.56 0.33 0.29

Note: This table lists the ratio of the R2 for a univariate regression of long-horizon returns on estimated risk aversion to 

the R2 for cay . Values less than 1 are in bold. The span in quartes is listed in the left hand column. The top row gives the 

EIS. The EIS is used to calculate household value and risk aversion. 

Note: R2s from univariate regressions of long-horizon stock returns on estimated risk aversion, cay , and the 

price/dividend ratio. The highest value for each horizon and sample is listed in bold.

Note: This table lists the ratio of the R2 for a univariate regression of long-horizon returns on estimated risk aversion to 

the R2 for cay . Values less than 1 are in bold. The span in quarters is listed in the left hand column. The top row gives the 

annual autocorrelation of risk aversion.

Table A1. Comparison of results from simulations of projection and log-linear model solutions

Note: Comparison of the projection and log-linear solutions. The two simulations use the same shocks but different 

policy functions. The first column is the mean difference between the simulations, the second column the standard 

deviation, and the third column the standard deviation of the difference scaled by the standard of the variable in the 

projection solution. RRA is relative risk aversion.
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Note: Densities of Euler equation errors under the two solution methods. The log errors are defined as log10(|E[Mt+1Rk,t+1]-1|). Densities are 
estimated using a kernel smoother on simulated data. In both cases, the model used is the benchmark single-shock model with EZ-habit

preferences and constant labor supply.



Note: Out-of-sample test statistics from Clark and McCracken (2001, 2005) based on the reduction in out-of-sample RMSE. 

Estimated risk aversion depends on the cointegrating model used to estimate cay . The top panel tests whether estimated risk 

aversion has marginal forecasting power against a null of a constant-mean model for returns. The cointegrating vector is 

reestimated in each period using only backward-looking information. The bottom panel tests adding estimated risk aversion to a 

null model including a constant and cay and vice versa. 

Figure A2. Out-of-sample test statistics
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