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OA.1 Implied volatility and regression forecasts

Implied volatilities are, under certain assumptions, expectations of future realized volatility

under the risk-neutral measure. If there is a time-varying volatility risk premium, then

implied volatilities will be imperfectly correlated with physical expectations of future realized

volatility, which constitutes actual uncertainty. This section compares implied volatilities to

regression-based forecasts of future volatility to evaluate the quantitative magnitude of that

deviation.

For each market, we estimate the regression

RVi,t = ai + bi (L)RVi,t−1 + ciIVi,t−1 + εi,t (OA.1)

where bi (L) is a polynomial in the lag operator, L, and ai and ci are coefficients. RVi,t is

realized volatility in month t for market i – the sum of squared daily futures returns during

the month. IVi,t is the (at-the-money) implied volatility at the end of month t in market i.

The table below reports the correlation between the fitted values from that regres-

sion – which represent physical uncertainty – and implied volatility. That is, it reports

corr (bi (L)RVi,t−1 + ciIVi,t−1, IVi,t−1). Ideally, we would like that correlation to be 1, so

that implied volatility is perfectly correlated with physical uncertainty, and hedging implied

volatility hedges uncertainty. Note that this does not require that risk premia are constant.

If bi (L) = 0 but ci 6= 1, risk premia are time-varying, but the physical uncertainty is still

perfectly correlated with implied volatility. It is only deviations of bi (L) from zero that

reduce the correlation. To the extent that the implied volatility summarizes all available

information, we would expect bi = 0.
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Correlations of implied volatility with fitted uncertainty

S&P 500 0.966 Crude oil 0.998 Silver 0.984

Treasuries 0.940 Feeder cattle 0.951 Soybeans 0.970

British Pound 0.987 Gold 0.994 Soybean meal 0.974

Swiss Franc 0.994 Heating oil 0.992 Soybean oil 0.946

Yen 0.976 Lean hogs 0.937 Wheat 0.998

Copper 0.963 Live cattle 0.919

Corn 0.994 Natural gas 0.949

The table shows that across the various markets, the correlations are all high, with a

minimum of 91.1 percent and a mean of 97.0 percent. So while implied volatility is not

literally the same as physical uncertainty, it appears to be fairly close. In the baseline

results, we allow for two lags in the polynomial b, but we have experimented with alternative

specifications and obtain similar results.

OA.2 Factor models and factor-hedging portfolios

In this section we review a useful result from the algebra of cross-sectional regressions: given

a set of K nontradable factors Ft, the cross-sectional estimates of the K risk premia, λ, are

the average excess returns of K portfolios, each of which has betas of exactly 1 with respect

to one factor, and 0 with respect to the other K − 1 factors: we refer to these as factor-

hedging portfolios for the K factors in Ft. The time series of returns for the factor-hedging

portfolios are the slopes of period-by-period cross-sectional regressions. These results hold

in population.

Consider K nontradable factors Ft, and a vector of N excess returns rt of test assets.

Nontradable factors have a risk premium of λ (a K×1 vector), so the factor model can be

written as:

rt︸︷︷︸
N×1

= β︸︷︷︸
N×K

λ︸︷︷︸
K×1

+ β︸︷︷︸
N×K

(Ft − E[Ft])︸ ︷︷ ︸
K×1

+ et︸︷︷︸
K×1

(OA.2)

Cross-sectional regressions operate in two stages. First, they estimate the N ×K matrix β

from time series regressions of the form:

rt = k + βFt + et

where the constant k also depends on the means of the factors E[Ft], which is not in-

terpretable in general when factors are nontradable, and is irrelevant for computing β. The
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second step of the cross-sectional regression could either be estimated using average returns

(in one cross-sectional regression), or as a sequence of period-by-period cross-sectional regres-

sions. The latter approach is often used in practice (as in the Fama-MacBeth version of the

two-step regressions) because it makes standard errors calculation easier, but either method

yields the same point estimates for risk premia λ. Here, we also follow the second method,

but for a different reason: because it generates a time-series of factor-hedging portfolios.

We therefore run, for each period t, cross-sectional regressions of rt on the estimated β:

rt = at + βgt + ut

obtaining a time-series of K × 1 slope vectors gt. Risk premia λ are then estimated as the

time-series average of the slopes: λ = E[gt].

The time-series slopes gt have a useful interpretation. They are calculated in each period

as:

gt = (β
′
β)−1β′rt (OA.3)

This equation clarifies that gt are themselves excess returns (they are the returns of

portfolios of the underlying N assets, with weights w = (β
′
β)−1β′); the risk premia λ are

the (risk premia) average excess returns of these K portfolios gt. We can now explore the

properties of these portfolios. Substituting rt out from (OA.2) we have:

gt = (β
′
β)−1β′(βλ+ β(Ft − E[Ft]) + et) = λ+ (Ft − E[Ft]) + (β

′
β)−1β′et

Under suitable assumptions on the cross-sectional dispersion in the β (see Giglio and Xiu

(2019) for a formal analysis) the last term is close to zero for large N (intuitively, the idiosyn-

cratic errors are diversified away, and the gt are well-diversified portfolios). We therefore can

write:

gt ' λ+ (Ft − E[Ft])

From this equation, it is clear that, as expected, E[gt] = λ. In addition, these K portfolios

have the special property of being exposed to exactly one of the underlying factor Ft each:

the matrix of exposures of gt to factor innovations Ft − E[Ft] is simply the identity matrix.

So the first portfolio has betas [1, 0, 0 , 0, ...], the second portfolio has betas [0, 1, 0 , 0, ...],

and so on. This is why we refer to these portfolios as factor-hedging portfolios.

Finally, it is worth pointing out that the latter property also holds in any sample: the

estimated betas of the factor-hedging portfolios with respect to the nontradable factors will
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be the vectors [1, 0, 0 , 0, ...], [0, 1, 0 , 0, ...] and so on in every sample.

OA.3 Approximating return sensitivities

This section describes the approximation of option returns used to obtain the rv and iv

portfolios. P denotes the price of an at-the-money straddle or strangle. σ is the Black–

Scholes volatility, n is the time to maturity, F is the forward price, and K is the strike. N

denotes the standard Normal cumulative distribution function.

For the calls and puts, respectively, we set

Kcall = F exp

(
bσ
√
n+

σ2

2
n

)
(OA.4)

Kput = F exp

(
−bσ
√
n+

σ2

2
n

)
(OA.5)

We calculate everything for arbitrary b. A straddle is the special case where b = 0, while a

strangle has positive b, so that both the put and call are out of the money.

OA.3.1 Prices

We first calculate the price of a strangle. The Black–Scholes formula gives

Pcall = FN (−b)− F exp

(
bσ
√
n+

σ2

2
n

)
N
(
−b− σ

√
n
)

(OA.6)

Pput = −FN (−b) + F exp

(
−bσ
√
n+

σ2

2
n

)
N
(
−b+ σ

√
n
)

(OA.7)

So the total price is

P = Pcall + Pput = F (N (−b)−N (−b)) (OA.8)

−F
(

exp

(
bσ
√
n+

σ2

2
n

)
N
(
−b− σ

√
n
)
− exp

(
−bσ
√
n+

σ2

2
n

)
N
(
−b+ σ

√
n
))

(OA.9)

≈ FN ′ (−b) 2σ
√
n (OA.10)

where the second line uses a first order approximation toN (x) around−b and exp
(
bσ
√
n+ σ2

2
n
)
≈

1.
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OA.3.2 Return derivatives

The local approximation for returns that we use is

∂rt+1

∂xt+1

=
∂

∂xt+1

P (Ft+1, σt+1)

P (Ft, σt)
(OA.11)

and we evaluate the derivatives at the point Ft+1 = Ft, σt+1 = σt.

We have

∂rt+1

∂σt+1

=
Pσ,t+1

Pt
(OA.12)

=
N ′ (−b) +N ′ (b)

N ′ (−b) 2σt
(OA.13)

≈ 1

σt
(OA.14)

where Pσ,t denotes ∂P (Ft+1, σt+1) /∂σt+1 (evaulated at σ2
t+1 = σ2

t ), and using the approxi-

mation that N ′ (b) ≈ N ′ (−b). We then have

∂rt+1

∂ (∆σt+1/σt)
≈ 1 (OA.15)

Next, for squared returns, we have

∂rt+1

∂F 2
t+1

=
PFF,t
Pt

(OA.16)

=
1

FtN ′ (−b) 2σ
√
n

N ′ (−b) +N (b)

Ftσt
√
n

(OA.17)

≈ 1

F 2
t σ

2
t n

(OA.18)

Again using N ′ (b) ≈ N ′ (−b). Finally, note that ∂ft+1 = ∂Ft+1/Ft+1, so that

∂2rt+1

∂ (ft+1/σt)
2 =

∂rt+1

∂F 2
t+1

F 2
t σ

2
t (OA.19)

≈ 1

n
(OA.20)

OA.3.3 Accuracy

To study how effective the above approximation is, we examine a simple simulation. We as-

sume that options are priced according to the Black–Scholes model. We set the initial futures
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price to 1 and the initial volatility to 30 percent per year. We then examine instantaneous

returns (i.e. through shifts in σ and S) on the iv and rv portfolios for straddles defined

exactly as in the main text, allowing the futures return to vary between between +/− 23.53

percent, which corresponds to variation out to four two-week standard deviations. We allow

volatility to move between 15 and 60 percent – falling by half or doubling.

The top two panels of figure OA.3 plot contours of returns on the rv and iv portfolios

defined in the main text, while the middle panels plot the contours predicted by the approx-

imations for the partial derivatives. For the iv portfolio, except for very large instantaneous

returns – 15–20 percent – the approximation lies very close to the truth. The bottom-right

panel plots the error – the middle panel minus the top panel – and except for cases where the

underlying has an extreme movement and the implied volatility falls – the exact opposite of

typical behavior – the errors are all quantitatively small, especially compared to the overall

return.

For the rv portfolio, the errors are somewhat larger. This is due to the fact that we

approximate the rv portfolio using a quadratic function, but its payoff has a shape closer to

a hyperbola. Again, for underlying futures returns within two standard deviations (where

the two-week standard deviation here is 5.88 percent), the errors are relatively small quan-

titatively, especially when σ does not move far. Towards the corners of the figure, though,

the errors grow somewhat large.

These results therefore underscore the discussion in the text. The approximations used

to construct the iv and rv portfolios are qualitatively accurate, and except in more extreme

cases also hold reasonably well quantitatively. But they are obviously not fully robust to all

events, so the factor model estimation, which does not rely on any approximations, should

be used in situations where the nonlinearities are a concern.

OA.3.4 Empirical return exposures

To check empirically the accuracy of the expressions for the risk exposures of the straddles,

appendix figure OA.2 plots estimated factor loadings for straddles at maturities from one to

five months for each market from time series regressions of the form

ri,n,t = ai,n + βfi,n
fi,t

IVi,t−1

+ βf
2

i,n

1

2

(
fi,t

IVi,t−1

)2

+ β∆IV
i,n

∆IVi,t
IVi,t−1

+ εi,n,t (OA.21)

The prediction of the analysis above is that βfi,n = 0, βf
2

i,n = 1/n, and β∆IV
i,n = 1.

Across the panels, the predictions hold surprisingly accurately. The loadings on fi,t are all

near zero, if also generally slightly positive. The loadings on the change in implied volatility
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are all close to 1, with little systematic variation across maturities. And the loadings on the

squared futures return tend to begin near 1 (though sometimes biased down somewhat) and

then decline monotonically, consistent with the predicted n−1 scaling.

Table OA.2 reports results of similar regressions for each underlying of the returns on the

rv and iv portfolios on the underlying futures return, the squared futures return, and the

change in implied volatility. The table shows that while the Black–Scholes predictions do not

hold perfectly, it is true that the rv portfolio is much more strongly exposed to realized than

implied volatility, and the opposite holds for the iv portfolio. The coefficients on (ft/σt−1)2

average 0.78 for the rv portfolio and 0.12 for the iv portfolio (though that average masks

some variation across markets). Conversely, the coefficients on ∆σt/σt−1 average 0.03 for

the rv portfolio and 0.81 for the iv portfolio Furthermore, the R2s are large, averaging 70

percent across the various portfolios, implying that their returns are well described by the

approximation (4).

OA.3.5 Volume

Figure OA.14 reports the average daily volume of all of the option contracts across maturities

1 to 6 months. For crude oil, which we use here as a reference contract, the figure reports

average daily volume in dollars; for all other contracts, it reports the average daily volume

relative to crude oil. Empirically, crude oil options have volume numbers of the same order

of magnitude as the S&P 500, while there is more heterogeneity across the other markets.

Looking across maturities, the general pattern is that dollar volume declines by about a

factor of three in almost all the markets between the 1- and 6-month maturities – so the

6-month maturity has less volume, but far from zero.

OA.3.6 Alternative scaling for returns

Because returns have a price in the denominator, if that price is measured with error, returns

can be biased upwards. The iv portfolio is net long the straddles, while the rv portfolio has

a total weight of zero, so measurement error in prices would bias iv returns up but not rv

returns. To account for that possibility, this section examines results when all the straddle

returns are scaled by the price of the one-month straddle, instead of the price of a straddle

with the same maturity.

Specifically, denoting Pn,t the price of a straddle of maturity n on date t, the return on
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an n-month straddle used in the main results is

Rn,t =
Pn−1,t+1 − Pn,t

Pn,t
(OA.22)

We consider returns on a portfolio that puts weight Pn,t

P1,t
on the n-month straddle and weight

1− Pn,t

P1,t
on the risk-free asset (which is a tradable portfolio), which is

rrescaledn,t+1 =
Pn−1,t+1 − Pn,t

Pn,t

Pn,t
P1,t

+

(
1− Pn,t

P1,t

)
rf,t (OA.23)

=
Pn−1,t+1 − Pn,t

P1,t

+

(
1− Pn,t

P1,t

)
rf,t (OA.24)

This portfolio is useful for two reasons. First, the one-month maturity has the highest volume

in most markets we study, and it is typically considered to be the most accurate. Second, this

eliminates differences in bias across maturities since in this specification, the denominator is

the same for all n.

For rrescaledn,t+1 , similar calculations to those above yield the results that

∂2rrescaledn,t+1

∂ (ft+1/σt)
2 ≈ 1√

n
(OA.25)

∂rrescaledn,t+1

∂ (∆σt+1/σt)
≈
√
n (OA.26)

We then calculate alternative rv and iv portfolios as

ivrescaledt =
3√
12

(√
5/12rrescaled5,t −

√
1/12rrescaled1,t

)
(OA.27)

rvrescaledt =
5/48√

12

(√
12rrescaled1,t −

√
12/5rrescaled5,t

)
(OA.28)

Figure OA.15 replicates figure 3 with the rescaled returns. The results are nearly identical

to the baseline for both the Sharpe ratios on the iv and rv portfolios and the estimated

factor risk premia. These results show that when we correct for the potential bias induced

by low liquidity and measurement error at longer maturities, the estimates are essentially

unchanged.
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OA.4 Calculating the covariance of the sample mean

returns

There are two features of our data that make calculating covariance matrix of sample means

difficult: we have an unbalanced panel and the covariance matrix is either singular or nearly

so. We deal with those issues through the following steps.

1. For each market, we estimate the two largest principal components, therefore modeling

straddle returns for underlying i and maturity n on date t as

ri,n,t = λ1,i,nf1,i,t + λ2,i,nf2,i,t + θi,n,t (OA.29)

where the λ are factor loadings, the f are estimated factors, and θ is a residual that we take

to be uncorrelated across maturities and markets (it is also in general extremely small).

2. We calculate the long-run covariance matrix of all J × 2 estimated factors. The

covariance matrix is calculated using the Hansen–Hodrick method to account for the fact that

the returns are overlapping (we use daily observations of 2-week returns). The elements of

the covariance matrix are estimated based on the available nonmissing data for the associated

pair of factors. That means that the covariance matrix need not be positive semidefinite.

To account for that fact, we set all negative eigenvalues of the estimated covariance matrix

to zero.

Given the estimated long-run covariance matrix of the factors, denoted Σf , and given the

(diagonal) long-run variance matrix of the residuals θ, denoted Σθ, the long-run covariance

matrix of the returns is then

Σr ≡ ΛΣfΛ
′ + Σθ (OA.30)

where Λ is a matrix containing the factor loadings λ.

3. Finally, it is straightforward to show that the covariance matrix of the sample mean

returns is

Σr̂ = M � Σr (OA.31)

where � denotes the elementwise product and M is a matrix where the element for a given

return pair is equal to the ratio of the number of observations in which both returns are

available to the product of the number of observations in which each return is available

individually (if all returns had the same number of observations T , then we would obtain

the usual T−1 scaling). We then have the asymptotic approximation that

r̂ ⇒ N (r̄,Σr̂) (OA.32)
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where r̂ is a vector that stacks the r̂i and r̄ stacks the r̄i and ⇒ denotes convergence in

distribution.

To construct Σŝr, we simply divide the i, j element of Σr̂ by the product of the sample

standard deviations of ri and rj.

OA.5 Calculating risk prices with unbalanced panels

and correlations across markets

In estimating the factor models, we have two complications to deal with: the sample length

for each underlying is different, and returns are correlated across underlyings. This section

discusses how we deal with those issues.

We have the model

ETi [Ri] = λiβi + αi (OA.33)

where ETi denotes the sample mean in the set of dates for which we have data for underlying

i, Ri is the vector of returns of the straddles, λi is a vector of risk prices, βi is a vector of risk

prices, and αi is a vector of pricing errors. Note that these objects are all population values,

rather than estimates. In order to calculate the sampling distribution for the estimated

counterparts, we need to know the covariance of the pricing errors. Note that there is also

a population cross-sectional regression with

ETi [Ri] = ai + βiETi [fi] + ETi [εi] (OA.34)

where εi is a vector of residuals and fi is a vector of pricing factors. That formula can be

used to substitute out returns and obtain

αi = ai + βiETi [fi] + ETi [εi]− λiβi (OA.35)

Since ai, λi, and βi are fixed in the true model, the distribution of αi depends only on the

distributions of the sample means ETi [fi] and ETi [εi]. Denoting the long-run (i.e. Hansen–

Hodrick) covariance matrix of fi as Σfi and that of εi as Σεi , we have

var (αi) = βiT
−1
i Σfβ

′
i + T−1

i Σεi (OA.36)

Since the λi are estimated from a regression, if we denote their estimates as λ̂i, we obtain
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the usual formula for the variance of λ̂i − λi

var
(
λ̂i − λi

)
= (β′iβi)

−1
β′ivar (αi) βi (β

′
iβi)

−1
(OA.37)

= Σf + (β′iβi)
−1
β′iΣεiβi (β

′
iβi)

−1
(OA.38)

Beyond the variance of λ̂i, we also need to know the covariance of any pair of estimates, λ̂i

and λ̂j. Using standard OLS formulas, we have

[
λ̂i − λi
λ̂j − λj

]
=

[
(β′iβi)

−1 β′iαi(
β′jβj

)−1
β′jαj

]
(OA.39)

=

[
(β′iβi)

−1 β′i (βiETi [ft] + ETi [εj,t])(
β′jβj

)−1
β′j
(
β2ETj [ft] + ETj [εj,t]

) ] (OA.40)

The covariance between λ̂i and λ̂j is then

T12

T1T2

(
Σf,i,j + (β′1β1)

−1
β′1Σε,i,jβ2 (β′2β2)

−1
)

(OA.41)

where Σf,i,j and Σε,i,j are now long-run covariance matrices (again from the Hansen–Hodrick

method). Using these formulas, we then have estimates of risk prices in each market indi-

vidually along with a full covariance matrix of all the estimates.

OA.6 SDF-based analysis

The marginal effects of realized and implied volatility can be estimated using the stochastic

discount factor representation of the factor model estimated in the previous section. Specif-

ically, given the set of straddle returns in each market, one can construct a pricing kernel

Mt of the form

Mt = M̄ −mf
i

fi,t
IVi,t−1

−mf2

i

(
fi,t

IVi,t−1

)2

−m∆IV
i

∆IVi,t
IVi,t−1

(OA.42)

where Mt represents state prices (or marginal utility) and 1 = Et−1MtRt for any return priced

by M . The difference between this specification and that in the previous section is that the

coefficients m... represent the marginal impact of each term on marginal utility, whereas the

γ... coefficients represent the premium for total exposure to the factors. Cochrane (2005)

discusses the distinction extensively.
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Denoting the covariance matrix of the factors in market i by Σi, the m coefficients can

be recovered as [
mf
i ,m

f2

i ,m
∆IV
i

]′
= Σ−1

i

[
γfi , γ

f2

i , γ
∆IV
i

]′
(OA.43)

The m’s now represent Sharpe ratios on portfolios with exposure to each of the individual

factors, orthogonalized to the other two. That is, m∆IV
i is the Sharpe ratio for a portfolio

exposed to the part of
∆IVi,t
IVi,t−1

that is orthogonal to
fi,t

IVi,t−1
and

(
fi,t

IVi,t−1

)2

.

Figure OA.12 reports the results of this exercise. The findings are qualitatively consistent

with the main results in figure 3 and in fact even stronger quantitatively. The marginal

effect of an increase in uncertainty on marginal utility, holding realized volatility fixed, is

consistently negative, while an increase in realized volatility increases marginal utility. The

fact that these results are close to the benchmark case is a consequence of the weak correlation

between innovations in realized and implied volatility, so that the rotation by Σ−1
i has small

effects.

Figure OA.12 also reports premia on orthogonalized versions of the rv and iv portfolios.1

Again, the results are similar to the main analysis.

OA.7 Robustness: ETF options

This section provides an alternative check on the results for crude oil options by examining

returns on straddles for options on two exchange traded funds. The first is the United States

Oil Fund (USO), which invests in short-term oil futures. USO has existed since 2006, and

Optionmetrics reports quotes for options beginning in May, 2007. The second fund is the

Energy Select Sector SPDR fund (XLE), which tracks the energy sector of the S&P 500.

XLE has existed since 1998 and Optionmetrics reports data since December, 1998.

We eliminate observations using the following filters:

1. Volume less than 10 contracts

2. Time to maturity less than 15 days

3. Bid-ask spread greater than 20 percent of bid/ask midpoint

4. Initial log moneyness – log strike divided by the futures price – greater than 0.75

implied volatility units in absolute value (where implied volatility is scaled by he square root

of time to maturity).

We then calculate straddle returns as in the main text over two-week periods and average

1These are constructed simply through a rotation. The rv⊥ portfolio has a positive correlation with rv
and zero correlation with iv, whie the iv⊥ portfolio has zero correlation with rv and a positive correlation
with iv.
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across the two straddles nearest to the money for each maturity, weighting them by the

inverse of their absolute moneyness.

The top section of table OA.7.1 reports the number of (potentially overlapping) two-week

straddle return observations across maturities for USO, XLE, and the CME Group futures

options used in the main analysis. Since the CME data goes back to 1983, there are far more

observations for that series than the other two. More interestingly, though, the number

of observations only declines by about 10 percent between the 1- and 6-month maturities,

while it falls by more than 2/3 for the XLE and USO samples. The CME data therefore has

superior coverage at longer horizons, which justifies its use in our main analysis.

The bottom section of table OA.7.1 reports the correlations of the USO and XLE straddle

returns with those for the CME on the days where they overlap. The correlations are

approximately 90 percent at all maturities for USO and 50 percent for XLE. The 90-percent

correlations for USO and the CME sample provide a general confirmation of the accuracy of

the CME straddle returns, since we would expect the USO and CME options to be highly

similar as USO literally holds futures. The lower correlation for XLE is not surprising given

that it holds energy sector stocks rather than crude oil futures.

Table OA.7.1.
Maturity: 1 2 3 4 5 6

# obs. USO 1640 1616 1721 1679 1118 525

XLE 2612 2545 2454 1928 1134 369

CME 6762 6645 6817 6801 6606 5998

Corr. w/ USO 0.93 0.96 0.95 0.92 0.89 0.83

CME XLE 0.43 0.48 0.50 0.49 0.50 0.53

In the main text, the RV and IV portfolio returns are calculated using 5- and 1-month

straddles. Since the number of observations drops off substantially between 4 and 5 months

for both XLE and USO, though, here we examine returns on RV and IV portfolios using

both 5- and 4-month straddles for the long-maturity side.

Figure OA.16 plots estimated annualized Sharpe ratios along with 95-percent confidence

bands for the RV and IV portfolios using 4- and 5-month straddles for the three sets of

options. In all four cases, the three confidence intervals always overlap substantially. The

fact that the sample for the CME options is far larger is evident in its confidence bands

being much narrower than those for the other two sources. For the IV portfolios, USO has

returns that are close to zero, but its confidence bands range from -1 to greater than 0.5,

indicating that it is not particularly informative about the Sharpe ratio.

Table OA.7.2 reports confidence bands for the difference between the IV and RV average
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returns constructed with the CME data and the same portfolios constructed using USO

and XLE. The top panel shows that the differences for the IV portfolios are negative for

USO and positive for XLE, but only the difference for USO constructed with the 4-month

straddle is statistically significant. The bottom panel similarly shows mixed results for the

point estimates for the differences for the RV portfolios, with none of the differences being

statistically significant.

Table OA.7.2. Differences between CME and USO, XLE mean returns

USO - CME, 4mo. USO - CME, 5mo. XLE - CME, 4mo. XLE - CME, 5mo.

IV return -2.2 -2.2 -0.8 -1.4

[-3.9,-0.2] [-4.8,0.4] [-2.5,4.1] [-4.1,6.3]

RV return 0.43 0.47 -0.27 0.67

[-0.6,1.4] [-0.6,1.4] [-1.8,1.3] [-1.5,2.6]

Notes: the table reports percentage (two-week) returns on USO and XLE minus returns on

CME RV and IV portfolios. 95-percent confidence intervals are reported in brackets.

The fact that the USO and CME straddle returns are highly correlated does not neces-

sarily mean that the CME data is accurate for the mean return on the straddles. To check

whether the difference in the means observed in the USO and XLE data would affect out

main results, we ask how the Sharpe ratios of the RV and IV portfolios in the CME data

would change if we shifted their means by the average differences reported in table OA.7.2.

The bars labeled “CME, USO adj.” and CME, XLE adj.” show how the confidence bands

would change if we shifted them by exactly the point estimates from table OA.7.2. Note that

this is not the same as shifting the Sharpe ratio for the CME data to match that for the XLE

or USO data. The reason is that the difference in table OA.7.2 is calculated only for the

returns on matching dates, whereas the Sharpe ratio calculated in figure OA.16 is calculated

using the full sample for the CME data. So the two adjusted bands take the full-sample

band and then shift it by the mean difference calculated on the dates that overlap between

the CME data and XLE or USO.

Figure OA.16 shows that the economic conclusions drawn for the crude oil straddles are

not changed if the mean returns are shifted by the differences observed in table OA.7.1. The

RV portfolio returns remain statistically significantly negative in all four cases, the changes in

the point estimates are well inside the original confidence intervals. The top panel shows that

the IV returns using 5-month straddles are similarly unaffected. For the 4-month straddles,

the only difference is that with the USO options, the estimated Sharpe ratio falls by about

half and is no longer statistically significantly greater than zero. So, again, out of eight cases

– IV and RV with 4- and 5-month straddles – in only one is there a nontrivial change in the

OA.14



conclusions, and even there the Sharpe ratio on the IV portfolio does not become negative,

it is simply less positive.

Overall, the period in which the USO and XLE options are traded is too short to use

them for our main analysis. This section shows that the USO straddle returns are highly

correlated with the CME returns. The mean returns on the XLE and CME straddles are

highly similar, while they differ somewhat more for CME and USO. However, shifting the

means used for the CME options in the main analysis by the observed difference between

the CME and USO options does not substantially change any of the conclusions.

OA.8 Model

To help provide some context for the empirical results and fit them into a standard frame-

work, this section describes results from a simple extension of the standard long-run risk

model of Bansal and Yaron (2004). The technical analysis is in Section OA.9; here we report

the specification and key results.

Agents have Epstein–Zin preferences over consumption , Ct, with a unit elasticity of

substitution, where the lifetime utility function, vt, satisfies

vt = (1− β) logCt +
β

1− α
logEt exp ((1− α) vt+1) (OA.44)

where α is the coefficient of relative risk aversion. Consumption growth follows the process

∆ct = xt−1 +
√
σ2
B,t−1 + σ2

G,t−1εt + Jbt (OA.45)

xt = φxxt−1 + ωxηx,t + ωx,Gησ,G,t − ωx,Bησ,B,t (OA.46)

σ2
j,t = (1− φσ) σ̄2

j + φσσ
2
j,t−1 + ωjησ,j,t, for j ∈ {B,G} (OA.47)

where εt and the η·,t are independent standard normal random variables. xt represents the

consumption trend. We have two deviations from the usual setup. First, we include jump

shocks, Jbt, where bt is a Poisson distributed random variable with intensity λ and J is the

magnitude of the jump. This addition allows for random variation in realized volatility and

is drawn from Drechsler and Yaron (2011). Second, there are two components to volatility,

which we refer to as bad and good. Bad volatility, σ2
B, is associated with low future con-

sumption growth, while good volatility, σ2
G, is associated with high future growth (where all

of the ω· coefficients are nonnegative).

Define realized volatility to be the realized quadratic variation in consumption growth,

while implied volatility is the conditional variance of consumption growth (these are formal-
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ized in the appendix).

Proposition 1 The average excess returns on forward claims to realized and implied volatil-

ity for consumption growth in this model are,

E [RVt+1 − PRV,t] = J2λ (1− exp (−αJ)) (OA.48)

E [IVt+1 − PIV,t] = (α− 1)
(
vY,x (ωx,GωG − ωx,BωB) + vY,σ

(
ω2
G + ω2

B

))
(OA.49)

where Px,t is the forward price for x. E [IVt+1 − PIV,t] > 0 for ωx,G sufficiently larger than

ωx,B. Furthermore, the sign of E [RVt+1 − PRV,t] is the same as the sign of J and of the

conditional skewness of consumption growth (i.e. the skewness of ∆ct+1 conditional on date-

t information).

Proposition 1 contains our key analytic results. We analyze premia for realized and

implied volatility on consumption – real activity – consistent with the focus in the empirical

analysis on macro volatility and uncertainty. The negative premium on realized volatility

is driven by downward jumps, similar to the literature on the volatility risk premium in

equities (Drechsler and Yaron (2011), Wachter (2013)). The sign of the premium on implied

volatility depends on the contribution of good versus bad volatility. When good volatility

shocks, where high volatility is associated with high future growth (e.g. due to learning

about new technologies), are relatively larger than bad volatility shocks (ωx,GωG > ωx,BωB)

the premium on implied volatility can be positive.

Section OA.9 provides a numerical calibration of the model using values close to those in

Bansal and Yaron’s (2004) original choices. It shows that the model generates quantitatively

realistic Sharpe ratios for implied and realized volatility in addition to a reasonable equity

premium.

The key economic mechanism for the positive pricing of uncertainty shocks is that high

volatility is sometimes associated with higher long-term growth. Intuitively, that mechanism

contributes positive skewness to consumption growth, while the jumps contribute negative

skewness. The appendix provides novel evidence on the skewness of consumption growth

consistent with the model. In particular, conditional skewness in the model, which depends

only on the jumps, is more negative than the skewness of expected consumption growth,

which depends on the relationship of volatility and long-run growth (x). We show that

consumption growth displays exactly the same pattern in US data.

So a simple version of the long-run risk model with good and bad volatility shocks and

jumps in consumption can match our key empirical facts. Furthermore, the empirical results

are sharp, in the sense that the sign of the premium on implied volatility identifies the
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relative importance of the bad and good volatility shocks, while the sign of the premium on

realized volatility identifies the sign of consumption jumps.

OA.9 Model details

OA.9.1 Dynamics

Consumption growth follows

∆ct = xt−1 +
√
σ2
B,t−1 + σ2

G,t−1εt + Jbt (OA.50)

xt = φxxt−1 + ωxηx,t + ωx,Gησ,G,t − ωx,Bησ,B,t (OA.51)

σ2
j,t = (1− φσ) σ̄2

j + φσσ
2
j,t−1 + ωjησ,j,t (OA.52)

for j ∈ {G,B}. The shocks ε, ηx, ηG, ηB are independent and Gaussian with unit variances.

The ω coefficients are all assumed to be positive. bt is a Poisson random variable with

intensity λ.

The dynamics can also be written as

[
xt

σ2
t − σ̄2

]
=

[
φx 0

0 φσ

][
xt−1

σ2
t−1 − σ̄2

]
+

[
ωx ωx,G 0

0 ωG ωB

] ηx,t

ηG,t

ηB,t

 (OA.53)

∆ct = xt−1 + σ2
t−1εt + Jbt (OA.54)

Yt = FYt−1 +Gηt (OA.55)

where Yt = [xt, σ
2
t − σ̄2]

′
, etc. The fact that the model can be rewritten with only a single

variance process follows from the linearity of the two processes, the fact that they have the

same rate of mean reversion, and the fact that they appear additively. We can then write

consumption and dividend growth as

∆ct = c′Y Yt−1 +
√
σ̄2 + g′Y Yt−1εt + Jbt (OA.56)

∆dt = γ
(
c′Y Yt−1 +

√
σ̄2 + g′Y Yt−1εt + Jbt

)
+ ωdεd,t (OA.57)

for vectors cY and gY . ∆dt is log dividend growth, which we will use for modeling equities.

It satisfies ∆dt = γ∆ct +ωdεd,t (εd,t ∼ N (0, 1)), where γ determines the leverage of equities.
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OA.9.2 Preferences

We assume agents have Epstein–Zin preferences with a unit IES,

vt = (1− β) ct +
β

1− α
logEt exp ((1− α) vt+1) (OA.58)

vct =
β

1− α
logEt exp ((1− α) (vct+1 + ∆ct+1)) (OA.59)

where vct is the log utility/consumption ratio, vct = vt − ct. We look for a solution to the

model of the form

vct = v̄ + v′Y Yt (OA.60)

Inserting into the recursion for vc,

vct =
β

1− α
logEt exp

(
(1− α)

(
v̄ + v′Y Yt+1 + c′Y Yt +

√
g′Y Ytεt+1 + Jbt+1

))
(OA.61)

=
β

1− α
logEt exp

(
(1− α)

(
v̄ + v′Y (FYt +Gηt+1) + c′Y Yt +

√
σ̄2 + g′Y Ytεt+1 + Jbt+1

))
(OA.62)

= β (v̄ + (v′Y F + c′Y )Yt) + β
1− α

2

(
v′YGG

′vY + σ̄2 + g′Y Yt
)

+
β

1− α
λ (exp ((1− α) J)− 1)(OA.63)

Matching coefficients,

v′Y = β (v′Y F + c′Y ) + β
1− α

2
g′Y (OA.64)

v′Y = β

(
c′Y +

1− α
2

g′Y

)
(I − βF )−1 (OA.65)

v̄ =
β

1− β

(
1− α

2

(
v′YGG

′vY + σ̄2
)

+
1

1− α
λ (exp ((1− α) J)− 1)

)
(OA.66)

The pricing kernel is then

Mt+1 = β
exp ((1− α) (vct+1))

Et exp ((1− α) (vct+1 + ∆ct+1))
exp (−α∆ct+1) (OA.67)

mt+1 = − log β + (1− α) vct+1 − α∆ct+1 − logEt exp ((1− α) (vct+1 + ∆ct+1))(OA.68)

Or, equivalently,

mt+1 = m0 +m′Y Yt +mηηt+1 − α
√
σ̄2 + g′Y Ytεt+1 − αJbt+1 (OA.69)
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m0 = − log β − (1− α)2

2

(
v′YGG

′vY + σ̄2
)
− λ (exp ((1− α) J)− 1) (OA.70)

m′Y = −cY −
(1− α)2

2
gY (OA.71)

mη = (1− α) v′YG (OA.72)

OA.9.3 Pricing equities

We have the usual Campbell–Shiller approximation for the return on equities, rt+1, with

rt+1 = κ0 + κ1zt+1 − zt + ∆dt+1 (OA.73)

where zt is the log price/dividend ratio of equities. We look for a solution of the form

zt = z0 + z′Y Yt, which leads to the pricing equation

0 = logEt exp

 m0 +m′Y Yt +mηηt+1 − α
√
σ̄2 + g′Y Ytεt+1 − αJbt+1

+κ0 + (κ1 − 1) z0 + κ1z
′
Y (FYt +Gηt+1)− z′Y Yt

+γ
(
c′Y Yt +

√
σ̄2 + g′Y Ytεt+1 + Jbt+1

)
+ ωdεd,t+1

 (OA.74)

The solution satisfies

z0 = (1− κ1)−1

(
m0 + κ0 + λ (exp ((γ − α) J)− 1)

+1
2

(
(mη + κ1z

′
YG) (mη + κ1z

′
YG)′ + (γ − α)2 σ̄2 + ω2

d

) ) (OA.75)

z′Y =

(
m′Y + γc′Y +

1

2
(γ − α)2 g′Y

)
(I − κ1F )−1 (OA.76)

OA.9.3.1 Average excess returns

To get average returns, on equities, first note that

logEt [exp (rt+1 − rf,t)] = logEt

exp

 κ0 + (κ1 − 1) z0 + κ1z
′
Y (FYt +Gηt+1)− z′Y Yt

+γ
(
c′Y Yt +

√
σ̄2 + g′Y Ytεt+1 + Jbt+1

)
+ ωdεd,t+1

−rf,0 − r′f,1Yt


(OA.77)

= κ0 + (κ1 − 1) z0 − rf,0 +
(
κ1z

′
Y F − z′Y + γc′Y − r′f,1

)
Yt (OA.78)

+
1

2

(
κ2

1z
′
YGG

′zY + γ2
(
σ̄2 + g′Y Yt

))
+

1

2
ω2
d + λ (exp (γJ)− 1)(OA.79)
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The risk-free rate is of the form rf,t = rf,0 + r′f,1Yt, with

rf,0 = log β +
(1− 2α)

2
σ̄2 + λ (exp ((1− α) J)− exp (−αJ)) (OA.80)

r′f,1 = c′Y −
1

2
α2g′Y (OA.81)

which allows for the calculation of the average excess return on equities. The conditional

standard deviation of equity returns is√
κ2

1z
′
YGG

′zY + γ2σ̄2 + γ2J2λ (OA.82)

OA.9.4 Pricing realized volatility

Since our empirical work estimates premia for realized and implied volatility for macro

variables, we examine here the pricing of realized and implied volatility for ∆ct+1. The

cumulative innovation in consumption between dates t and t+ 1 is

∆ct+1 − Et∆ct+1 = σ2
t εt+1 + J (bt+1 − λ)

The first part is typically thought of as a diffusive component. That is, we can think of

εt+1 = Bt+1 − Bt, for a standard (continuous-time) Brownian motion Bt. Similarly, bt+1 is

the innovation in a pure jump process, bt+1 = Nt+1 − Nt, where Nt is a (continuous-time)

Poisson counting process. Now consider measuring the total quadratic variation in those two

processes (i.e. as though we were measuring realized volatility from daily futures returns, as

in our empirical analysis). The quadratic variation in B between dates t and t+ 1 is exactly

1, while the quadratic variation in N is exactly Nt+1 − Nt = bt+1. We then say that the

realized volatility in consumption growth between period t and t+ 1 is

RVt+1 = σ2
t + J2bt+1 (OA.83)

In this case, the diffusive part of the realized volatility is entirely predetermined. This is

a typical result. It is only the jumps that contribute an unexpected component to realized

volatility. The pricing of realized volatility will therefore depend on the pricing of jumps.
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The price of a forward claim on RVt+1 is

PRV,t = Et

[
exp (mt+1)

Et exp (mt+1)
RVt+1

]
= Et

[
exp

(
(1− α) v′YGηt+1 − α

(√
σ̄2 + g′Y Ytεt+1 + Jbt+1

)
−
[

1
2

(
(1− α)2 v′YGG

′v′Y + α2 (σ̄2 + g′Y Yt)
)

+ λ (exp (−αJ)− 1)
] ) (σ2

t + J2bt+1

)]
= σ2

t + J2λ exp (−αJ)

The average excess return on that forward is then

Et [RVt+1 − PRV,t] = σ2
t + J2λ− σ2

t − J2λ exp (−αJ) (OA.84)

= J2λ (1− exp (−αJ)) (OA.85)

The sign of this object is equal to the sign of J . Note also that this is the sign of the

conditional skewness of consumption growth.

OA.9.5 Pricing uncertainty

We define uncertainty on date t as expected realized volatility on date t + 1. That is, it is

the conditional variance for ∆ct+1. So we say

IVt ≡ σ2
t + J2λ (OA.86)

We now consider the price and excess return for a forward claim to IVt+1.

PIV,t = Et

[
exp (mt+1)

Et exp (mt+1)
IVt+1

]
= J2λ+ σ̄2 + φσσ̂

2
t + Et

[
exp

(
(1− α) v′YGηt+1

−1
2

(
(1− α)2 v′YGG

′v′Y
) ) g′Y ηt+1

]

= J2λ+ σ̄2 + φσσ̂
2
t +

Et [exp ((1− α) v′YGηt+1) g′YGηt+1]

exp
(

1
2

(
(1− α)2 v′YGG

′v′Y
))

= J2λ+ σ̄2 + φσσ̂
2
t + (1− α)

(
ωG (vY,xωx,G + vY,σωG)

+ωB (vY,σωB − vY,xωx,B)

)
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where the last line follows from straightforward but tedious algebra. The average return on

the claim on uncertainty is then

E [IVt+1]− PIV,t = J2λ+ σ̄2 + φσσ̂
2
t −

(
J2λ+ σ̄2 + φσσ̂

2
t + (1− α)

(
ωG (vY,xωx,G + vY,σωG)

+ωB (vY,σωB − vY,xωx,B)

))
(OA.87)

= − (1− α)

(
ωG (vY,xωx,G + vY,σωG)

+ωB (vY,σωB − vY,xωx,B)

)
(OA.88)

In the standard case from Bansal and Yaron (2004), we would have ωx,G = ωx,B = 0, so this

would be

E [IVt+1]− PIV,t = (α− 1) vY,σ
(
ω2
G + ω2

B

)
(OA.89)

Since vY,σ < 0, the premium for IV will be negative in that case. Now when ωx,G can be

positive, we have

E [IVt+1]− PIV,t = (α− 1)
(
vY,x (ωx,GωG − ωx,BωB) + vY,σ

(
ω2
G + ω2

B

))
(OA.90)

Since vY,x > 0, if ωx,G is sufficiently large relatively to ωx,B, the premium can be positive.

The Sharpe ratio on this object depends on the standard deviation of IVt+1−PIV,t, which

is exactly
√
ω2
G + ω2

B.

OA.9.6 Calibration

The calibration is relatively close to Bansal and Yaron’s (BY; 2004) choices, with a few

changes. For the preferences, we set β = 0.998 and α = 15. β is as in BY, while α is

set somewhat higher to help match the equity premium. We study post-war data here, in

which the volatility of consumption growth is lower, thus necessitating higher risk aversion

to match the equity premium. Leverage, γ, is set to 3.5, on the upper end of the range of

values studied by BY.

The jump intensity is 1/18, implying jumps occur on average once every 18 months, while

the jump size J = −0.015.

The persistence of x and σ2 are 0.979 and 0.987, as in BY.

σ̄ = 0.0039, which is half the value used in BY in order to match the lower consumption

volatility noted above. The standard deviation of innovations to x is set to 0.06×σ, which is

somewhat higher than the value of 0.044 in BY. Of that, ωx = ωx,G = 0.0129 and ωx,B = 0.

Similarly, ωG = ωB = 1.62 × 10−6, so that the standard deviation of innovations to σ2 is

0.23×10−5, as in BY. Finally, ωd = 0.01.
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OA.9.7 Results

The table below lists key moments from the model along with analogs from the data. The

model moments are based on a monthly simulation of the model that is aggregated to the

quarterly frequency to match quarterly data observed empirically (see also BY).

The first three rows on the left show that the model is able to generate realistic values

for mean, standard deviation, and Sharpe ratio for equity returns. The top row on the

right shows that the volatility of consumption growth is somewhat higher than in the data.

However, this value is still smaller than that used by Bansal and Yaron (2004) by 40 percent.

Our calibration of 0.87 percent is the midpoint between Bansal and Yaron’s (2004) original

value and the value in the post-war data. Using a smaller volatility would require either

increasing some other form of risk (e.g. long-run risk or stochastic volatility) or risk aversion

in order to generate a realistic equity premium.

Next, the table shows that the Sharpe ratios for claims on RV and IV are approximately

-0.21 and 0.19, respectively, which agree well with the empirical values (which are calculated

as the overall means across all 19 markets we study; see figure 3). These are the key moments

that the model was designed to match. They show that it is able to generate quantitatively

realistic premia for uncertainty and realized volatility shocks.

As discussed in the main text, the economic mechanism behind the negative premium on

RV is negative conditional skewness in consumption growth, while the mechanism behind

the positive premium for IV – the good volatility shocks that raise future consumption

growth – pushes in the direction of positive skewness. That implies that the skewness of

the conditional expectation of consumption growth should be less negative than conditional

skewness. To test that idea, we examine skewness in the model and data. The information

set used for conditioning here is lagged consumption growth. That is, we look at results

involving regressions of consumption growth on three of its own lags in both the model and

the data.

The table shows that the data and model both share the feature that the conditional

expectation of consumption growth is much less negatively skewed than the surprise in

consumption growth, consistent with the main mechanism in the model. This is not a

moment that the model was explicitly designed to match. The model was meant to match

the premia on RV and IV, so this represents an additional test of the proposed mechanism.

To be clear, the main contribution of the paper is not meant to be this model, but

nevertheless this section shows that the empirical results can be rationalized in a standard

structural asset pricing model.

Summary statistics from the model and empirical data, 1947–2018
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Model Data Model Data

E [rm − rf ] 0.077 0.056 std (∆c) 0.0087 0.0052

std (rm − rf ) 0.14 0.11 skewt (∆ct+1) -0.32 -0.15
E[rm−rf ]
std(rm−rf)

0.53 0.52 skew (Et∆ct+1) -0.10 -0.07

E[RVt+1−PRV,t]
std[RVt+1−PRV,t]

-0.21 -0.32

E[RVt+1−PRV,t]
std[RVt+1−PRV,t]

0.19 0.26
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Figure OA.1: Fit to realized volatility indexes

Note: See figure 2. This figure uses the JLN realized volatility series instead of uncertainty.
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Figure OA.2: Factor loadings

S&P 500

Note: Loadings of two-week straddle returns on the three risk factors. The factors are all scaled by current
IV , as in equation 2. The loadings are scaled so that if the Black-Scholes approximation was exact, the
loading on ∆IV would be 1 at all maturities, the loading on fi,t would be 0 at all maturities, and the
loading on f2i,t would be 1/n where n is the maturity in months.
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Figure OA.3: rv and iv portfolio approximation errors
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Note: The initial futures price is 1 and the initial volatility, σ, is 0.3. The top panels calculate the return
on the rv and iv portfolios given an instantaneous shift in the futures price and volatility to the values
reported on the axes under the assumption that the Black–Scholes formula holds. The middle panels plot
returns under the approximations used in the text. The bottom panels are equal to the middle minus the
top panels. All returns and errors are reported as decimals.
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Figure OA.4: Straddle and strangle returns
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Note: Returns of 1-standard deviation strangles and straddles as function of the underlying’s return.
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Figure OA.5: Imposing a filter on volume

Note: Same as figure 3, but using only options for which volume is neither zero nor missing.
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Figure OA.6: RV and IV portfolio Sharpe ratios and factor risk premia, one-week holding
period

Note: Same as figure 3, but using one-week holding periods.
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Figure OA.7: RV and IV portfolio Sharpe ratios and factor risk premia (first half of the
sample)

Note: Same as Figure 3, but only using the first half of the sample (up to June 2000).
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Figure OA.8: RV and IV portfolio Sharpe ratios and factor risk premia (second half of the
sample)

Note: Same as Figure 3, but only using the second half of the sample (after June 2000).
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Figure OA.10: RV and IV portfolio Sharpe ratios and factor risk premia (using 2-month IV)

Note: Same as Figure 3, but using 2-month instead of 5-month IV.

OA.34



Figure OA.11: RV and IV risk premia estimates with and without weighting

Note: The figure reports risk premia for the factor model, unweighted (as in figure 3) or weighting each
observation by the implied volatility.
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Figure OA.12: SDF loadings on RV and IV (Sharpe ratios)

Note: The figure reports the stochastic discount factor (SDF) loadings on IV and RV. The loadings are
scaled to correspond to Sharpe ratios of orthogonalized RV and IV portfolios, whose risk premia is equal
to the corresponding SDF loading.

OA.36



Figure OA.13: Bid-ask spreads on 8/4/2017

Note: The figure reports posted bid-ask spreads for at-the-money straddles obtained from Bloomberg on
of August 4, 2017 (the CBOE S&P 500 spreads on that date are also obtained from Optionmetrics).
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Figure OA.14: Volume across markets and maturities

Note: Average daily volume of options in different markets. The panel corresponding to crude oil reports
values in dollars. All other panels show values relative to the volume in the crude oil market, matched by
maturity.
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Figure OA.15: RV and IV portfolio Sharpe ratios and factor risk premia (robust to measure-
ment error)

Note: Same as Figure 3, but returns are computed using the same denominator at all maturities, to
provide robustness with respect to measurement error in the prices (see section OA.3.6).OA.39



Figure OA.16: Options on crude futures vs ETFs

Note: Sharpe ratios on rv and iv portfolios using straddles for CME crude oil futures and the XLE and
USO exchange traded funds. “4-month” and “5-month” refers to the longer of the two maturities used to
construct each portfolio (the short maturity is always one month). The squares are point estimates based
on the full sample available for each series. The lines are 95-percent confidence bands constructed with a
50-day block bootstrap. ”CME, USO adj.” and ”CME, XLE adj.” are identical to the ”CME” numbers
but with the mean return in the denominator of the Sharpe ratio shifted by the point estimate for the
mean difference from table A.6.2.
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Table OA.1: χ2 test of the factor model

Betas of rv portfolio with DIV of maturities 1 to 5

p-value
S&P 500 0.22
T-bonds 0.02
GBP 0.01
CHF 0.38
JPY 0.75
Copper 0.75
Corn 0.00
Crude oil 0.08
Feeder cattle 0.25
Gold 0.44
Heating oil 0.14
Lean hog 0.19
Live cattle 0.80
Natural gas 0.30
Silver 0.68
Soybeans 0.21
Soybean meal 0.41
Soybean oil 0.11
Wheat 0.29

Note: For each market, the table reports bootstrapped p-values for the χ2 of on the squared fitting errors
of the factor model (bootstrapped following Constantinides, Jackwerth, and Savov (2013).

OA.41



Table OA.2: Risk exposures of rv and iv portfolios

rv portfolio iv portfolio
f f2 ΔIV R2 f f2 ΔIV R2 Corr(rv,iv)

S&P 500 -0.07 1.44 0.02 0.68 S&P 500 -0.16 1.37 0.96 0.75 0.48
T-bonds -0.01 0.81 -0.06 0.75 T-bonds -0.01 0.35 1.05 0.78 0.13
GBP -0.03 0.81 0.00 0.82 GBP -0.02 0.44 0.91 0.86 0.47
CHF 0.00 0.75 0.03 0.73 CHF 0.05 0.52 0.91 0.72 0.64
JPY -0.02 0.74 0.04 0.80 JPY 0.02 0.57 0.89 0.87 0.63
Copper -0.01 0.79 -0.06 0.62 Copper 0.01 0.23 1.00 0.85 0.07
Corn -0.02 0.65 -0.01 0.69 Corn 0.06 0.41 0.85 0.75 0.08
Crude oil -0.03 1.00 -0.02 0.75 Crude oil 0.03 -0.07 0.93 0.77 0.06
Feeder cattle -0.03 0.98 -0.01 0.66 Feeder cattle -0.02 -0.25 0.96 0.78 0.02
Gold 0.00 0.70 0.01 0.68 Gold 0.08 0.35 0.97 0.68 0.48
Heating oil -0.02 0.88 -0.04 0.76 Heating oil 0.04 -0.17 1.00 0.77 -0.02
Lean hog -0.02 0.90 -0.06 0.75 Lean hog 0.04 -0.49 1.03 0.64 -0.24
Live cattle -0.03 1.03 -0.03 0.72 Live cattle 0.00 -0.44 0.92 0.78 -0.12
Natural gas -0.03 0.87 -0.02 0.80 Natural gas 0.03 -0.38 0.98 0.64 -0.17
Silver -0.01 0.63 0.03 0.71 Silver 0.04 0.20 0.92 0.85 0.45
Soybeans -0.02 0.66 -0.01 0.71 Soybeans 0.04 0.30 0.89 0.80 0.18
Soybean meal -0.01 0.61 -0.02 0.74 Soybean meal 0.05 0.31 0.93 0.69 0.19
Soybean oil -0.01 0.64 -0.02 0.73 Soybean oil 0.05 0.29 0.94 0.77 0.20
Wheat -0.01 0.63 -0.05 0.78 Wheat 0.05 0.30 0.97 0.78 0.16
Average -0.02 0.82 -0.01 0.73 Average 0.02 0.20 0.95 0.76

Note: The table reports regression coefficients of the rv and iv portfolios for each market onto three
market-specific factors: the futures return, the squared futures return, and the change in IV. The column
on the right reports the correlation between the rv and iv portfolio returns.
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Table OA.3: Risk exposures of rv portfolio to IV innovations at different maturities
Betas of rv portfolio with DIV of maturities 1 to 5

rv portfolio 1 2 3 4 5
S&P 500 0.08 0.08 0.07 0.05 0.02
T-bonds 0.07 0.06 0.03 0.00 -0.06
GBP 0.07 0.07 0.06 0.04 0.00
CHF 0.07 0.07 0.07 0.06 0.03
JPY 0.07 0.07 0.07 0.06 0.04
Copper 0.08 0.08 0.05 0.00 -0.06
Corn 0.08 0.08 0.07 0.05 -0.01
Crude oil 0.06 0.06 0.04 0.01 -0.02
Feeder cattle 0.09 0.08 0.06 0.03 -0.01
Gold 0.07 0.07 0.07 0.05 0.01
Heating oil 0.07 0.07 0.05 0.02 -0.04
Lean hog 0.09 0.08 0.06 0.01 -0.06
Live cattle 0.08 0.08 0.06 0.02 -0.03
Natural gas 0.08 0.08 0.07 0.03 -0.02
Silver 0.09 0.09 0.09 0.07 0.03
Soybeans 0.07 0.07 0.06 0.03 -0.01
Soybean meal 0.07 0.07 0.05 0.03 -0.02
Soybean oil 0.07 0.07 0.05 0.02 -0.02
Wheat 0.05 0.05 0.03 -0.01 -0.05

RV-hedging 1 2 3 4 5
S&P 500 0.05 0.04 0.04 0.02 0.00
T-bonds 0.11 0.11 0.10 0.07 0.00
GBP 0.08 0.08 0.07 0.05 0.00
CHF 0.07 0.07 0.06 0.04 0.00
JPY 0.07 0.07 0.06 0.04 0.00
Copper 0.13 0.13 0.12 0.07 0.00
Corn 0.12 0.12 0.12 0.08 0.00
Crude oil 0.07 0.07 0.06 0.03 0.00
Feeder cattle 0.09 0.09 0.07 0.04 0.00
Gold 0.10 0.10 0.08 0.05 0.00
Heating oil 0.09 0.09 0.08 0.06 0.00
Lean hog 0.11 0.11 0.10 0.06 0.00
Live cattle 0.09 0.09 0.07 0.04 0.00
Natural gas 0.10 0.10 0.09 0.06 0.00
Silver 0.12 0.12 0.11 0.07 0.00
Soybeans 0.11 0.11 0.09 0.06 0.00
Soybean meal 0.12 0.12 0.10 0.07 0.00
Soybean oil 0.12 0.12 0.11 0.07 0.00
Wheat 0.11 0.11 0.10 0.06 0.00

Maturity of IV shock

Maturity of IV shock

Note: The table reports the loading of the rv portfolio (top panel) and of the RV-hedging portfolio built
using the factor model (bottom panel) on shocks to IV of different maturity, from 1 to 5 months.
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Table OA.4: Risk exposures of rv and iv portfolios, 2-month IV

Code: code_loadings_2month.m

rv portfolio iv portfolio
f f2 ΔIV R2 f f2 ΔIV R2 Corr(rv,iv) PASTE TRV HERE PASTE TIV HERE

S&P 500 -0.04 0.74 0.04 0.38 S&P 500 -0.33 4.79 0.78 0.66 0.27 -0.04403 0.743387 0.035885 0.378429 -0.33096 4.788869 0.782892 0.662113
T-bonds 0.00 0.37 0.00 0.39 T-bonds -0.08 2.44 0.84 0.72 0.14 0.001116 0.374377 0.000682 0.392666 -0.07711 2.443597 0.836684 0.724055
GBP -0.02 0.45 0.03 0.50 GBP -0.05 2.04 0.70 0.73 0.27 -0.01614 0.449034 0.028285 0.497416 -0.05393 2.038616 0.701523 0.728368
CHF 0.00 0.40 0.03 0.44 CHF 0.07 2.16 0.74 0.69 0.40 -0.00434 0.398663 0.033463 0.435819 0.067496 2.158974 0.735063 0.691526
JPY -0.02 0.42 0.04 0.54 JPY -0.01 2.04 0.72 0.82 0.46 -0.01946 0.415988 0.037577 0.539817 -0.00946 2.037504 0.721615 0.817313
Copper -0.01 0.33 0.02 0.25 Copper 0.00 2.18 0.78 0.68 -0.04 -0.00585 0.330083 1.58E-02 0.251355 0.000407 2.1814 0.781245 0.681332
Corn -0.02 0.27 0.03 0.32 Corn 0.10 2.17 0.64 0.72 0.07 -0.02092 0.267729 0.029207 0.324988 0.103278 2.170353 0.640644 0.717416
Crude oil -0.01 0.58 0.01 0.50 Crude oil -0.06 1.72 0.77 0.71 0.19 -0.01478 0.5755 0.008166 0.502724 -0.05707 1.71766 0.773649 0.708795
Feeder cattle 0.00 0.45 0.04 0.36 Feeder cattle -0.21 2.07 0.77 0.58 0.05 0.001176 0.445861 0.0381 0.363427 -0.20976 2.067184 0.772743 0.584258
Gold -0.01 0.28 0.02 0.35 Gold 0.09 2.21 0.84 0.66 0.23 -0.00729 0.28294 0.015785 0.349412 0.088363 2.212219 0.839218 0.659035
Heating oil -0.02 0.54 0.01 0.49 Heating oil 0.04 1.31 0.80 0.62 0.09 -0.01583 0.544416 0.011959 0.491073 0.042234 1.310109 0.802014 0.618963
Lean hog -0.01 0.45 0.03 0.45 Lean hog -0.01 1.59 0.74 0.59 0.08 -0.0061 0.44668 0.026399 0.447115 -0.01365 1.585297 0.73859 0.587069
Live cattle -0.02 0.53 0.02 0.47 Live cattle -0.06 1.75 0.75 0.68 0.18 -0.01532 0.53315 0.024819 0.468208 -0.05717 1.751938 0.750309 0.67868
Natural gas -0.03 0.50 0.02 0.55 Natural gas 0.03 1.28 0.77 0.67 0.18 -0.02689 0.502215 0.016186 0.552198 0.028043 1.281543 0.771103 0.674768
Silver 0.00 0.28 0.04 0.41 Silver -0.01 1.70 0.79 0.76 0.30 0.002497 0.280743 0.035679 0.406198 -0.00552 1.703562 0.792883 0.762121
Soybeans -0.02 0.38 0.03 0.50 Soybeans 0.05 1.52 0.69 0.77 0.29 -0.01557 0.377608 0.026339 0.495955 0.052663 1.524565 0.691857 0.765914
Soybean meal -0.01 0.31 0.03 0.47 Soybean meal 0.07 1.60 0.66 0.75 0.26 -0.01327 0.310595 0.028212 0.469066 0.069233 1.595942 0.655038 0.754999
Soybean oil -0.01 0.33 0.02 0.43 Soybean oil 0.07 1.63 0.73 0.72 0.20 -0.0131 0.332162 0.02237 0.433573 0.072594 1.627871 0.730127 0.722838
Wheat -0.01 0.26 0.00 0.33 Wheat 0.07 2.16 0.70 0.79 0.14 -0.01195 0.259314 0.004916 0.329767 0.068146 2.164887 0.696227 0.785877
Average -0.01 0.41 0.02 0.43 Average -0.01 2.02 0.75 0.70

Note: Same as table OA.2, but 2-month IV is used as one of the factors (as opposed to 5-month IV) and
in the construction of the rv and iv portfolios.
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