Introduction
 Model
 Estimating dynamics
 Long Run Risk is the Worst Case

 Long run risk is the worst-case scenario: ambiguity aversion and non-parametric estimation of the endowment process
 antipication
 antipication

Rhys Bidder and Ian Dew-Becker

April 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Introduction

- We do not know the consumption process
 - E.g. debate over nature (and even existence) of long-run risk
- If economists don't, perhaps consumers don't either
- This paper:
 - Assume Epstein-Zin preferences
 - What is the worst-case plausible process for consumption?
 - What happens if investors price using that model?

Introduction

- What does model uncertainty mean?
 - Parametric uncertainty: unsure about the parameters of a known process (e.g. an AR(1))
 - Full model uncertainty: you don't even know the order of the ARMA representation
 - Infinite-dimensional problem

Introduction

- We allow for full model uncertainty
- The big idea: the worst-case model is literally the long-run risk model (small, persistent trend in growth)
 - Very painful
 - Very difficult to reject
 - Gives a rigorous justification for LRR models (not just moment matching)

- Implications:
 - Very high risk premia for small risk aversion
 - Matches many asset pricing moments
 - Asset prices are strongly procyclical
 - No arguments about the true endowment process

Consumption Processes

• The true data generating process is

$$\begin{array}{rcl} \Delta c_t &=& ar{b}\left(L
ight) arepsilon_t \ arepsilon_t &\sim& h_arepsilon = N\left(0,1
ight) \end{array}$$

where Δc is log consumption growth, L is the lag operator

$$ar{b}\left(L
ight)arepsilon_{t}=\sum_{j=0}^{\infty}ar{b}_{j}arepsilon_{t-j}$$

• Only restriction on \bar{b} is that Δc is stationary, spectrum is finite, non-zero

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Preferences

Given a known model, agents have Epstein–Zin preferences, unit EIS

$$v_t = (1 - \beta) c_t + rac{eta}{1 - lpha} \log E_t \exp \left(v_{t+1} \left(1 - lpha
ight)
ight)$$

- α is the coefficient of relative risk aversion
- β time discount factor
- Unit EIS leads to analytic solutions

Model	Estimating dynamics	Long Run Risk is the Worst Case

• Epstein-Zin preferences with a known model

$$\mathsf{vc}\left(\Delta c^{t};b
ight)=rac{eta}{1-eta}rac{1-lpha}{2}b\left(eta
ight)^{2}+\sum_{j=1}^{\infty}eta^{j}\mathsf{E}_{t}\left[\Delta c_{t+j}|b
ight]$$

• Key result: agents averse to long-run risk

• $b(\beta)$ measures the total discounted effect of ε on consumption

• If $\alpha = 1$, reduces to power utility, dynamics irrelevant

Ambiguity

- The agent possesses a subjective distribution over *b* (informed by estimation)
 - Standard Bayesian analysis is (maybe) possible but intractable

- She does not reduce her uncertainty over b into a unique distribution over Δc_t sequences
- Instead, she identifies a "worst case" data generating process
- Captures key feature of risk-averse behavior: we overweight bad outcomes

Preferences - Robustness over Propagation

• Find the worst-case model of propagation, b^w

$$b^{w} = \arg\min_{b} E\left[vc\left(\Delta c^{t};b\right)|b\right] + \lambda g\left(b\right)$$
$$= \arg\min_{b} \frac{\beta}{1-\beta} \frac{1-\alpha}{2} b\left(\beta\right)^{2} \sigma_{\varepsilon}^{2} + \lambda g\left(b\right)$$

- g(b) measures the plausibility of a model
- λ and α closely related (directly linked in the paper)
- Note the unconditional expectation
 - Agent chooses a worst-case model once and for all
 - Preferences are not fully dynamic

Deriving g(b)

- g(b) encodes the agent's subjective beliefs regarding the likelihood of a given b.
- Desired properties of g(b)
 - Results from a realistic estimation procedure
 - Imposes minimal structure on the class of b considered
- \Rightarrow non-parametric spectral estimation

Non-parametric Spectral Estimation

- Agent estmates a finite-order AR (or MA) with the lag order increasing with sample size
 - Berk (1974), Brockwell and Davis (1988)
 - Asymptotically non-parametric
- The confidence set contains models with minimally constrained dynamics
 - Parametric point estimate; non-parametric confidence interval
- The models will *generically* be outside the parametric class of the *AR* or *MA* estimated from any given sample

Introduction

Mode

Estimating dynamics

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simple benchmark: white noise

• True model:

$$\Delta c_t = \bar{b}_0 \varepsilon_t$$

Worst-case model

$$egin{array}{rcl} b^w_j &=& arphieta^j ext{ for } j>0\ b^w_0 &=& ar b_0+arphi \end{array}$$

• Exactly equivalent to

$$\Delta c_t = x_t + \mu_t$$
$$x_t = \beta x_{t-1} + v_t$$

• μ_t and v_t independent white noise

Simple benchmark: white noise

- If consumption growth is white noise (and the agent estimates that) then the worst-case model is *literally* the long-run risk model
 - The agent fears a persistent trend in consumption growth
- The persistence of the trend is exactly the time discount factor
 - Match the deviation from the model to the impact on utility
 - Less persistent \Rightarrow easier to detect
 - More persistent \Rightarrow placing deviations on dates you don't care about (e.g. fractional integration)
- This is an extremely persistent trend
 - Half-life of 70 years
 - Bansal and Yaron (2004): half life = 3 years

Asset pricing and calibration

- Examine returns on levered consumption claims
 - Standard model of equity
- Moments to match:
 - Hansen–Jagannathan bound
 - Equity premium and Sharpe ratio
 - Volatility of equity prices
 - Predictability of returns
 - Interest rate behavior

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Calibration

Parameter	Value	Description
β	$0.99^{1/4}$	Time preference 1% per year
γ	5.62	Equity leverage $(D_t=C_t^\gamma)$
λ	0.116	For H-J bound of 0.33 per year
α	5.31	Implied by choice of λ
$\mathit{std}\left(\Delta c ight)$ (annual)	2%	Annual consumption vol.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Asset pricing moments

Moment	Model	Standard EZ	Data
HJ bound	0.33	0.09	_
$E[r_m - r_f]$	7.00	2.09	7
$std(r_m)$	19.69	11.24	21
$std(E_{t}[r_{m,t+1} - r_{f,t+1}])$	3.06	0	-
AC1(P/D)	0.94	N/A	0.91
std(P/D)	0.24	0	0.40

Properties of the worst-case model

- The worst-case model is an ARMA(1,1) with AR root of eta
- Can the agent reject the worst-case model?
- Generate data under the benchmark; what is the probability the agent rejects the worst-case at the 5% level?

Test	50-year sample	100-year sample
Ljung–Box	4.6%	4.9%
ARMA(1,1) LR	5.4%	6.3%
Newey–West	9.2%	9.5%

- The agent is extremely unlikely to reject the worst-case model
 - Even for a correctly specified likelihood ratio test!

Predictability

- Under the pricing model, consumption growth is persistent
- So agents act like good times will continue
 - Looks like naive extrapolation
 - Or 'natural expectations' (Fuster et al., 2011)
- Makes asset prices procyclial and returns predictable

Introduction

Mode

Estimating dynamics

Summary

- We study asset pricing with full model uncertainty
- The pricing model displays strong persistence
- Induces a large and volatile equity premium
- More generally: shows what kind of uncertainty models need to allow
 - Don't just let people be unsure of the AR(1) parameter