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Abstract

In the period 1996–2014, it was costless on average to hedge news about future

variance at horizons ranging from 1 quarter to 14 years. It is only purely transitory

and unexpected realized variance that was priced. These results present a challenge

to many structural models of the variance risk premium, such as the intertemporal

CAPM, recent models with Epstein–Zin preferences and long-run risks, and models

where institutional investors have value-at-risk constraints. The results are also difficult

to reconcile with macro models in which volatility affects investment decisions.
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1 Introduction

The recent explosion of research on the effects of volatility in macroeconomics and finance

shows that economists care about uncertainty shocks. It appears that investors, on the other

hand, do not. In the period since 1996, it has been costless on average to hedge news about

future volatility in aggregate stock returns; in other words investors have not been required

to pay for insurance against volatility news. Many economic theories – both in macroeco-

nomics and in finance – have the opposite prediction. The recent consumption-based asset

pricing literature is heavily influenced by Epstein–Zin (1991) preferences, which in standard

calibrations with preference for early resolution of uncertainty imply that investors have a

strong desire to hedge news about future uncertainty, and hence should be willing to pay

large premia for insurance against volatility shocks. Furthermore, in recent macroeconomic

models shocks to uncertainty about the future can induce large fluctuations in the economy.1

But if increases in economic uncertainty can drive the economy into a recession, we would

expect that investors would want to hedge those shocks. The fact that shocks to expected

volatility have not earned a risk premium thus presents a challenge to a wide range of recent

research.

As a concrete example, consider the legislative battles over the borrowing limit of the

United States in the summers of 2010 and 2011. Those periods were associated with increases

in both financial measures of uncertainty, e.g. the VIX, and also the measure of policy

uncertainty from Baker, Bloom, and Davis (2014). Between July and October, 2011, the

1-month variance swap rate – a measure of investor expectations for S&P 500 volatility over

the next month – rose every month, from 16.26 to 42.32 percent (annualized, computed

at the beginning of the month). However, those shocks also had small effects on realized

volatility in financial markets: for example, realized volatility actually decreased between

August and September. The debt ceiling debate caused uncertainty about the future to be

high during the whole period, but did not correspond to high contemporaneous volatility

during the same period. It is precisely this imperfect correlation between realized volatility

and expectations of future volatility that allows us to disentangle the pricing of their shocks.

In this paper, we directly measure how much people pay to hedge shocks to expectations

of future volatility. We find that news shocks have been unpriced: any investor could have

bought insurance against volatility shocks for free, and therefore any investor could have

freely hedged the increases in uncertainty during the debt ceiling debate.

We measure the price of variance risk using novel data on a wide range of volatility-

1See, e.g., Bloom (2009), Bloom et al. (2014), Christiano, Motto, and Rostagno (2014), Fernandez-
Villaverde et al. (2011), and Gourio (2012, 2013)
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linked assets both in the US and around the world, focusing primarily on variance swaps

with maturities between 1 month and 10 years. The data covers the period 1996–2014.

Variance swaps are assets that pay to their owner the sum of daily squared stock market

returns from their inception to maturity. They thus give direct exposure to future stock

market volatility and are the most natural and direct hedge for the risks associated with

increases in aggregate economic uncertainty.

The analysis of the pricing of variance swaps yields two simple but important results.

First, news about future volatility is unpriced – exposure to volatility news has not earned

a risk premium in our sample. Second, exposure to realized variance is strongly priced, with

an annualized Sharpe ratio of -1.7 – five times larger than the Sharpe ratio on equities. We

find that it is the downside component of realized volatility that investors are specifically

trying to hedge, consistent with the results of Bollerslev and Todorov (2011) showing that

realized variance is priced due to its correlation with large negative jumps, and also Segal,

Shaliastovich, and Yaron (2015), who examine a model with good and bad volatility. We

conclude that over our sample, investors paid a large amount of money for protection from

extreme negative shocks to the economy (which mechanically generate spikes in realized

volatility), but they did not pay to hedge news that uncertainty or the probability of a

disaster has changed.

The results present a challenge to a wide range of models. From a finance perspective,

Merton’s (1973) intertemporal capital asset pricing model says that assets that have high

returns in periods with good news about future investment opportunities are viewed as

hedges and thus earn low average returns. Since expected future volatility is a natural state

variable for the investment opportunity set, the covariance of an asset’s returns with shocks

to future volatility should affect its expected return, but it does not.2

Consumption-based models with Epstein–Zin (1991) preferences have similar predictions.

Under Epstein–Zin preferences, marginal utility depends on lifetime utility, so that assets

that covary positively with innovations to lifetime utility earn high average returns.3 If high

expected volatility is bad for lifetime utility (either because volatility affects the path of

consumption or because volatility reduces utility simply due to risk aversion), then volatility

2Recently, Campbell et al. (2014) and Bansal et al. (2013) estimate an ICAPM model with stochastic
volatility and find that shocks to expected volatility (and especially long-run volatility) are priced in the
cross-section of returns of equities and other asset classes. Although the focus on their paper is not the
variance swap market, Campbell et al. (2014) test their specification of the ICAPM model also on straddle
returns and synthetic volatility claims, and find that the model manages to explain only part of the returns
on these securities. This suggests that the model is missing some high-frequency features of the volatility
market.

3This is true in the most common calibrations with a preference for early resolution of uncertainty. When
investors prefer a late resolution of uncertainty the risk prices are reversed.
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news should be priced.4

As a specific parameterized example with Epstein–Zin preferences, we study variance

swap prices in Drechsler and Yaron’s (2011) calibrated long-run risk model. While that

model represents a major innovation in being able to both generate a large variance risk

premium (the average gap between the 1-month variance swap rate and realized variance)

and match results about the predictability of market returns, we find that its implications

for the term structure of variance swap prices and returns are distinctly at odds with the

data: it predicts that shocks to future expected volatility should be strongly priced, counter

to what we observe empirically.

We obtain similar results in Wachter’s (2013) model of time-varying disaster risk with

Epstein–Zin preferences. The combination of fluctuations in the probability of disaster and

Epstein–Zin preferences results in a counterfactually high price for insurance against shocks

to expected future volatility relative to current volatility. In both Wachter (2013) and Drech-

sler and Yaron (2011), Sharpe ratios earned by claims on variance more than three months

in the future 3 months in the future are similar to those earned by claims to realized variance

over the next month, whereas in the data the sample Sharpe ratios are all actually positive

for claims to variance more than two months in the future. So both models fail to match

our key stylized fact that only very short-term variance claims earn large negative Sharpe

ratios.5

More positively, we show that Gabaix’s (2012) model of rare disasters, which builds

on the work of Rietz (1988), Barro (2006), and many others, can match the stylized fact

that Sharpe ratios on variance claims fall to zero rapidly with maturity. Intuitively, when

investors have power utility, they invest myopically in that they do not price shocks that

only affect expectations about the future. Disaster risk helps the model generate the large

risk premia that we observe on short-term claims.6 That said, Gabaix’s (2012) model is not

a complete quantitative description of financial markets; we simply view it as giving a set of

4Also see Branger and Völkert (2010) and Zhou and Zhu (2012) for discussions. Barras and Malkhozov
(2014) study the determinants of changes in the variance risk premium over time.

5Similar problems with matching term structures of Sharpe ratios in structural models have been studied
in the context of claims to aggregate market dividends by van Binsbergen, Brandt, and Koijen (2012). Our
results thus support and complement theirs in a novel context. See also van Binsbergen and Koijen (2015)
for a recent review of the broad range of evidence on downward sloping term structures. Our paper also
relates to a large literature that looks at derivative markets to learn about general equilibrium asset pricing
models, for example Backus, Chernov and Martin (2011) and Martin (2014, 2015).

6An alternative possibility is that the variance market is segmented from other markets, as in, e.g.,
Gabaix, Krishnamurthy, and Vigneron (2007). In that case, the pricing of risks might not be integrated
between the variance market and other markets. We show, however, that our results hold not only with
variance swaps, but also in VIX futures and in the options market, which is large, liquid, and integrated
with equity markets, making it less likely that our results are idiosyncratic.
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sufficient conditions that allow a model to match the behavior of the variance swaps.

Our work is related to three main strands of the literature. First, there is the recent

work in macroeconomics on the consequences of shocks to volatility, such as Bloom (2009),

Bloom et al. (2014), Christiano, Motto, and Rostagno (2014), Fernandez-Villaverde et al.

(2011), and Gourio (2012, 2013). We argue that if shocks to volatility are important to the

macroeconomy, then investors should be willing to pay to hedge them. The lack of a risk

premium on volatility news thus argues that macro models should focus on shocks to realized

rather than expected volatility.

Second, we build on the consumption-based asset pricing literature that has recently

focused on the pricing of volatility, including Bansal and Yaron (2004), Drechsler and Yaron

(2011), Wachter (2013), and Bansal et al. (2013). We argue that the currently available set of

consumption-based models with Epstein–Zin preferences are unlikely to explain the pricing

of volatility claims. Andries, Eisenbach, and Schmalz (2015) analyze a model consumption-

based model that matches broad features of the variance market, while van Binsbergen and

Koijen (2015) discuss other recent work on related topics.

Finally, there is a large literature studying the pricing of volatility in financial markets.7

Most closely related to us is a small number of recent papers with data on variance swaps

with maturities from two to 24 months, including Egloff, Leippold, and Wu (2010) and

Aı̈t-Sahalia, Karaman, and Mancini (2014), who study no-arbitrage term structure models.

The pricing models we estimate are less technically sophisticated than that of Aı̈t-Sahalia,

Karaman, and Mancini (2014), but we complement and advance their work in three ways.

First, we examine a vast and novel range of data sources. For S&P 500 variance swaps, our

panel includes data at both shorter and longer maturities than in previous studies – from one

month to 14 years. The one-month maturity is important for giving a claim to shorter-term

realized variance, which is what we find is actually priced. Having data at very long horizons

is important for testing models, like Epstein–Zin preferences, in which expectations at very

long horizons are the main drivers of asset prices. In addition, we are the first to examine

the term structure of variance swaps for major international indexes, as well as for the term

structure of the VIX obtained from options on those indexes. We are thus able to confirm

that our results hold across a far wider range of markets, maturities, and time periods than

7A number of papers study the pricing of volatility in options markets, e.g. Jackwerth and Rubinstein
(1996), Coval and Shumway (2001), Bakshi and Kapadia (2003), Broadie, Chernov and Johannes (2009),
Christofferson, Jacobs, Ornthanalai, and Wang (2008), and Kelly, Pastor, and Veronesi (2014). Lu and Zhu
(2010) and Mencia and Sentana (2013) study VIX futures markets, while Bakshi, Panayotov, and Skoulakis
(2011) show how to construct forward claims on variance with portfolios of options. In the Treasury bond
market, Cieslak and Povala (2014) find, similar to us, that short-run volatility is more strongly priced than
long-run volatility. See also Amengual and Xiu (2014) for an important recent study of jumps in volatility.
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previously studied.

Our second contribution to the previous term structure literature is that rather than

working exclusively within the context of a particular no-arbitrage pricing model for the term

structure of variance claims, we derive from the data more general and model-independent

pricing facts. Our results can be directly compared against the implications of different

structural economic models, which would be more difficult if they were only derived within a

specific no-arbitrage framework. Our key finding, that purely transitory realized variance is

priced while innovations to longer term volatility expectations are not, can be obtained from

a simple reduced-form analysis and in data both for the United States and other countries.

Nevertheless, we also confirm our results in a more formal no-arbitrage setting, whose main

advantage is to yield much more precise estimates of risk prices.

Our third and most important contribution is to explore the implications of variance

swaps for testing structural economic models. Our theoretical analysis leads us to the con-

clusion that the empirical facts in the variance swap market are most consistent with a model

in which variance swaps are used to hedge the realization of market crashes and in which

variation in expected future stock market volatility is not priced by investors, counter to the

predictions of recent asset pricing and macroeconomic models.

The remainder of the paper is organized as follows. Section 2 describes the novel datasets

we obtain for variance swap prices. Section 3 reports unconditional means for variance

swap prices and returns, which demonstrate our results in their simplest form. Section 4

analyzes the cross-sectional and time-series behavior of variance swap prices and returns

more formally in standard asset pricing frameworks. In section 5, we discuss what structural

general-equilibrium models can fit the data. We calibrate three leading models from the

literature, comparing them to our data, showing that only one matches the key stylized

facts. Section 6 concludes.

2 The data

2.1 Variance swaps

We focus primarily on variance swaps. Variance swaps are contracts in which one party pays

a fixed amount at maturity, which we refer to as price of the variance swap, in exchange for

a payment equal to the sum of squared daily log returns of the underlying asset occurring

until maturity. In this paper, the underlying is the S&P 500 index unless otherwise specified.
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The payment at expiration of a variance swap initiated at time τ and with maturity m is

Payoffmτ =
τ+m∑
j=τ+1

r2
j − V Smτ (1)

where time here is indicated in days, rj is the log return on the underlying on date j, and

V Smτ is the price on date τ of an m-day variance swap. We focus on variance swaps because

they give pure exposure to variance, their payoffs are transparent and easy to understand,

they have a relatively long time-series, and they are relatively liquid.

Our main analysis focuses on two proprietary datasets of quoted prices for S&P 500

variance swaps.8 Dataset 1 contains monthly variance swap prices for contracts expiring in

1, 2, 3, 6, 12, and 24 months, and includes data from December, 1995, to October, 2013.

Dataset 2 contains data on variance swaps with expirations that are fixed in calendar time,

instead of fixed maturities. Common maturities are clustered around 1, 3, and 6 months,

and 1, 2, 3, 5, 10, and 14 years. Dataset 2 contains prices of contracts with maturities

up to five years starting in September, 2006, and up to 14 years starting in August, 2007,

and runs up to February, 2014. We apply spline interpolation to each dataset to obtain the

prices of variance swaps with standardized maturities covering all months between 1 and 12

months for Dataset 1 and between 1 and 120 months for Dataset 2 (though in estimating

the no-arbitrage model below we use the original price data without interpolation).

Both variance swap datasets are novel to the literature. Variance swap data with matu-

rities up to 24 months as in Dataset 1 has been used before (Egloff, Leippold, and Wu, 2010,

Ait-Sahalia, Karaman, and Mancini, 2014, and Amengual and Xiu, 2014), but the shortest

maturity previous studies observed was two months. We show that the one-month variance

swap is special in this market because it is the exclusive claim to next month’s realized vari-

ance, which is by far the most strongly priced risk in this market. Observing the one-month

variance swap is critical for precisely measuring the price of realized-variance risk.

This is also the first paper to observe and use variance swap data with maturity longer

than two years. Since Epstein–Zin preferences imply that it is the very low-frequency compo-

nents of volatility that should be priced (Branger and Volkert, 2010; Dew-Becker and Giglio,

2014), having claims with very long maturities is important for effectively testing the central

predictions of Epstein–Zin preferences.

The variance swap market is large: the notional value of outstanding variance swaps at

8Both datasets were obtained from industry sources. Dataset 1 is obtained from a hedge fund. Dataset 2
is obtained from Markit Totem, and reports averages of quotes obtained from dealers in the variance swap
market, on average 11.
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the end of 2013 was $4 billion of notional vega.9 $4 billion of notional vega means that an

increase in annualized realized volatility of one percentage point induces total payments of $4

billion. This market is thus small relative to the aggregate stock market, but it is non-trivial

economically.

We obtained information about average bid-ask spreads by maturity from a large market

participant. Typical bid-ask spreads are 1 to 2 percent for maturities up to 1 year, 2 to 3

percent between 1 and 2 years, and 3 to 4 percent for maturities up to 10 years. The bid-ask

spreads are thus non-trivial, but also not so large as to prohibit trading. Moreover, they are

small relative to the volatility of the prices of these contracts. At the short end, the spreads

are comparable to those found for corporate bonds by Bao, Pan, and Wang (2011).

Table 1 shows the total volume in notional vega terms for all transactions between March

2013 and June 2014, obtained from the DTCC (see Appendix A.1). In little more than a year,

the variance swap market saw $7.2 billion of notional vega traded. Only 11 percent of the

volume was traded in short maturity contracts (1-3 months); the bulk of the transactions

occurred for maturities between 6 months and 5 years, and the median maturity was 12

months.

Since these datasets are new to the literature, we devote Appendix A.1 to a battery of

tests to ensure the quality of the data. In particular, we verify that: neither dataset contains

stale prices (at the monthly frequency, which is the one we observe); the two datasets contain

essentially the same information when they overlap (correlation above 0.997); quotes from

the two datasets correspond closely to the prices for actual trades we observe since 2013;

and prices in the variance swap market are extremely highly correlated with other related

markets (synthetic variance swaps constructed from options as described below, and VIX

futures).

In addition to the prices of S&P 500 variance swaps, we also obtained prices for variance

swaps in 2013 and 2014 for the FTSE 100 (UK), Euro Stoxx 50 (Europe), and DAX (Ger-

many) indexes. This is the first paper to examine volatility claims in international markets

and we show that our main results are consistent globally.

2.2 Options

It is well known that variance swaps can be synthesized as a portfolio of all available out-

of-the money options (Jiang and Tian (2005); Carr and Wu (2009)). The synthetic variance

9See the Commodity Futures Trading Commission’s (CFTC) weekly swap report. The values reported
by the CFTC are consistent with data obtained from the Depository Trust & Clearing Corporation that we
discuss below.
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swap portfolio is used to construct the CBOE’s VIX index. Options thus give an alternative

source of information about the pricing of variance risk.

The VIX is usually reported for a 30-day maturity, but the formulas are valid at any

horizon (see Appendix A.2 for details on construction). While other portfolios of options

can be constructed that are also exposed to volatility in some way, the VIX is unique in that

it represents a pure claim to the variance at the chosen horizon (or the squared variation

when there are jumps), without any direct exposure to price movement of the underlying,

independently of the horizon.10

The VIX is calculated based on an extraordinarily deep market. Options are traded in

numerous venues, have notional values outstanding of trillions of dollars, and have been thor-

oughly studied.11 Since options are exchange-traded, they involve no counterparty risk, so

we can use them to check whether our results for variance swaps are affected by counterparty

risk.

We construct VIX-type portfolios for the S&P 500, FTSE 100, Euro Stoxx 50, DAX, and

CAC 40 indexes using data from Optionmetrics. We confirm our main results by showing

that term structures and returns obtained from investments in options are similar to those

obtained from variance swaps.12

2.3 VIX futures

Futures have been traded on the VIX since 2004. The VIX futures market is significantly

smaller than the variance swap market, with current outstanding notional vega of approx-

imately $500 million.13 Bid/ask spreads are smaller than what we observe in the variance

swap market, at roughly 0.1 percent, but as the market is smaller, we would expect price

impact to be larger (and market participants claim that it is). We collected data on VIX

futures prices from Bloomberg since their inception and show below that they yield nearly

10For example, an alternative strategy to obtain variance exposure is a straddle. Relative to the VIX,
straddles are easier to construct, but they are claims on the absolute value of the return, not its variance,
which makes the term structure more difficult to interpret given that expected absolute values are not
summable across periods. In addition, obtaining exposure to realized variance through straddles requires
constant rebalancing, while variance swaps require no rebalancing throughout their lives.

11Even in 1990, Vijh (1990) noted that the CBOE was highly liquid and displayed little evidence of price
impact for large trades.

12Recently, Boguth et al. (2012a,b) argue that returns measured on options portfolios can be substantially
biased by noise, one potential source of which is the bid/ask spread. The majority of our results pertain
directly to prices of volatility claims, as opposed to their returns, meaning that the issues noted by Boguth et
al. are unlikely to affect our analysis. Furthermore, when we analyze returns, the portfolios are not levered
to the degree that Boguth et al. argue causes biases in results.

13According to the CBOE futures exchange market statistics. See:
http://cfe.cboe.com/Data/HistoricalData.aspx
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identical results to variance swaps.

More recently, a market has developed in exchange-traded notes and funds available to

retail investors that are linked to VIX futures prices. These funds currently have an aggregate

notional exposure to the VIX of roughly $5 billion, making them comparable in size to the

variance swap market.

3 The term structure of variance claims

In this section we study average prices and returns of variance swaps. The key result that

emerges is that only very short-duration variance claims earn a significant risk premium in

our data. The annual Sharpe ratio for bearing transitory volatility risk is estimated to be

1.3, whereas the Sharpe ratio for exposure to shocks to expected future volatility 3 or more

months out is estimated to be economically and statistically insignificant.

3.1 Variance Swap Prices

The shortest maturity variance swap we consistently observe has a maturity of one month,

so we treat a month as the fundamental period of observation. We define RVt to be realized

variance – the sum of squared daily log returns – during month t. The subscript from here

forward always indexes months, rather than days.

Given a risk-neutral (pricing) measure Q, the price of an n-month variance swap at the

end of month t, V Snt , is

V Snt = EQ
t

[
n∑
j=1

RVt+j

]
(2)

where EQ
t denotes the mathematical expectation under the risk-neutral measure conditional

on information available at the end of month t.

Since an n-month variance swap is a claim to the sum of realized variance over months

t+ 1 to t+ n, it is straightforward to compute prices of forward claims on realized variance.

Specifically, we define an n-month variance forward as an asset with a payoff equal to realized

variance in month t+ n. The absence of arbitrage implies

F n
t ≡ EQ

t [RVt+n] (3)

= V Snt − V Sn−1
t (4)

F n
t represents the market’s risk-neutral expectation of realized variance n months in the
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future (at the end of month t). We use the natural convention that

F 0
t = RVt (5)

so that F 0
t is the variance realized during the current month t. A one-month variance forward

is exactly equivalent to a one-month variance swap, F 1
t = V S1

t .

Figure 1 plots the time series of forward variance prices for maturities between one

month and ten years. The figure shows all series in annualized percentage volatility units,

rather than variance units: 100×
√

12× F n
t instead of F n

t . It also plots annualized realized

volatility, 100×
√

12× F 0
t , in each panel. The top panel plots forward variance claim prices

for maturities below one year, while the bottom panel focuses on maturities longer than one

year.

The term structure of variance claim prices is usually weakly upward sloping. In times of

distress, though, such as during the financial crisis of 2008, the short end of the curve spikes,

temporarily inverting the term structure. Volatility obviously was not going to continue at

crisis levels, so markets priced variance swaps with the expectation that it would fall in the

future.

Figure 2 reports the average term structure of forward variance claims for two different

subperiods – 2008–2014, a relatively short sample for which we have data for longer maturi-

ties, is in the top panel, while the full sample, 1996–2013, is in the bottom panel. The first

point on the graph (maturity 0) corresponds to the average realized volatility, whereas all

points from 1 on are forward claims of different maturity.

Figure 2 shows that the term structure of forward variance claim prices is upward sloping

on average, but also concave, flattening out very quickly as the maturity increases. In

particular, the curve is much steeper at the very short end than everywhere else. For example,

the top panel shows that the three-month claim is 30 percent more expensive than realized

volatility on average, but from the three-month claim to the 120-month claim, the price rises

only by another 20 percent. The bottom panel shows that the 12-month claim is only 5

percent more expensive than the three-month claim.

The average forward variance term structures in Figure 2 provide the first indication

that the compensation for bearing risk associated with news about future volatility is small

in this market. The return on holding a variance forward for a single month is
Fn−1
t+1 −Fn

t

Fn
t

:

it clearly depends on the price difference between n-maturity forwards and n − 1-maturity

forwards. The average return is therefore closely related to the slope of the forward variance

11



term structure.14

If this curve is upward sloping between maturities n−1 and n, forward claims of maturity

n will have negative average returns, implying that it is costly to buy insurance against

increases in future expected volatility n − 1 months ahead. The fact that the curve is very

steep at short horizons and flat at long horizons is a simple way to see that it is only the

claims to variance in the very near future that earn significant negative returns.

To see whether the shape of the curve is well measured statistically, figure 3 plots the

average slope (F n
t − F n−1

t ) and curvature ((F n+1 − F n
t ) −

(
F n
t − F n−1

t

)
) at each maturity

along with confidence intervals calculated using the Newey–West (1987) method with 6 lags.

The top panel of figure 3 shows that the slopes are well identified – the slope falls from 3.7

annualized percentage points at the one-month maturity to an insignificant 0.3 percentage

points at three months. The slope is also uniformly declining with maturity. The bottom

panel of figure 3 plots the average curvature of the term structure. The term structure is

concave on average at every maturity (and statistically significant at 7 of 11 maturities).

Figure 3 thus confirms that the basic intuition from figure 2, that the term structure is

steep at short maturities and essentially perfectly flat on average at longer maturities, is well

measured statistically.

The top and bottom panel of Figure 2 differ in both the time period and the maturities

displayed. To check the robustness of our conclusions about the average shape of the term

structure of variance forwards over the period used to construct it, figure 4 examines the

average term structure in different subsamples, focusing on the maturities up to 12 months

to make the comparison easier. The figure shows that after 2008 the curve became slightly

steeper for maturities above 1 month. However, even after 2008 the curve is still much flatter

at maturities above 3 months than it is at the very short end, displaying the same pattern

as in the full sample. Of course, the economic significance of the “flatness” of the curve

14More precisely, let us first look at unscaled returns, defined as:

R̂n
t+1 = Fn−1

t+1 − Fn
t

Taking unconditional expectations of this equation we obtain:

E[R̂n
t+1] = E[Fn−1

t+1 ]− E[Fn
t ]

Since the term structure is stationary, E[Fn−1
t+1 ] = E[Fn−1

t ], and therefore:

E[R̂n
t+1] = E[Fn−1

t ]− E[Fn
t ]

The average slope of the term structure between maturities n and n− 1 corresponds to the risk premium on
the n−maturity zero-coupon claim. A similar relation holds – after a loglinear approximation – for scaled
returns as well: the average scaled returns at a certain maturity corresponds to the slope of the curve at
that maturity relative to the level at the same maturity.
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must be understood within the context of a model. In section 5 we show formally that the

curve of forward variance swaps is “too flat” in both subperiods relative to the implications

of workhorse asset pricing models. Finally, we also report in the figure the curve obtained

excluding the peak of the financial crisis (9/2008 to 6/2009). The shape of the curve is

unchanged.

3.2 Returns on forward variance claims

We now study the monthly returns on variance forwards. The return on an n-month variance

forward corresponds to a strategy that buys the n-month forward and sells it one month later

as an (n− 1)-month forward, reinvesting then again in a new n-month forward. We define the

excess return of an n-period variance forward following Gorton, Hayashi, and Rouwenhorst

(2013)15

Rn
t+1 =

F n−1
t+1 − F n

t

F n
t

(6)

Given the definition that F 0
t = RVt, the return on a one-month forward, R1

t+1 is simply the

percentage return on a one-month variance swap. We focus here on the returns for maturities

of one to 12 months, for which we have data since 1995. All the results extend to higher

maturities in the shorter sample.

Table 2 reports descriptive statistics for our panel of monthly returns. Only the average

returns for the one- and two-month maturities are negative, while all the others are weakly

positive. Return volatilities are also much higher at short maturities, though the long end still

displays significant variability – returns on the 12-month forward have an annual standard

deviation of 17 percent, which indicates that expectations of 12-month volatility fluctuate

significantly over time.

Finally, note that only very short-term returns have high skewness and kurtosis. A buyer

of short-term variance swaps is therefore potentially exposed to counterparty risk if realized

variance spikes and the counterparty defaults. This should induce her to pay less for the

insurance, i.e. we should expect the average return to be less negative. Therefore, the

presence of counterparty risk on the short end of the term structure would bias our estimate

towards not finding the large negative expected returns that we instead find. On the other

hand, returns at longer maturities have much lower skewness and kurtosis, which indicates

15Note that Fn−1
t+1 − Fn

t is also an excess return on a portfolio since no money changes hands at the
inception of a variance swap contract. Following Gorton, Hayashi, and Rouwenhorst (2013), we scale the
return by the price of the variance claim bought. This is the natural scaling if the amount of risk scales
proportionally with the price, as in Cox, Ingersoll, and Ross (1985). We have reproduced all of our analysis
using the unscaled excess return Fn−1

t+1 − Fn
t as well and confirmed that all the results hold in that case.
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that counterparty risk is substantially less relevant. Finally, we note that we obtain the same

results below using options, which are exchange traded and not affected by counterparty risk.

Given the different volatilities of the returns at different ends of the term structure, it

is more informative to examine Sharpe ratios, which measure compensation earned per unit

of risk. Figure 5 shows the annual Sharpe ratios of the 12 forwards. The Sharpe ratios are

negative for the one- and two-month maturities (at around -1.3 and -0.4, respectively), but

all other Sharpe ratios are insignificantly different from zero, and in fact slightly positive.

Statistically, not only we don’t reject the hypothesis that these Sharpe ratios are different

from zero: we can statistically reject the hypothesis that the Sharpe ratios are meaningfully

negative at all maturities above 3; for example, we can reject at the 95% level that the annual

Sharpe ratio on a 12-month claim is below -0.11.16

Despite the relatively short sample, there is also a strongly statistically significant differ-

ence across the Sharpe ratios at the very short end of the curve and everywhere else. The

annual Sharpe ratio of the 1-month variance claim is more negative by 0.9 than the 2-month

claim (the p-value for the difference is 0.03), and at least 1.3 lower than the Sharpe ratio at

all higher horizons (the p-values of the differences are all less than 0.01). These are enor-

mous differences, considering for example that the annual Sharpe ratio of the aggregate stock

market has historically been approximately 0.3. The one-month forward therefore yields a

Sharpe ratio statistically and economically much more negative than any other forward that

we observe.

Any claim to volatility at a horizon beyond one month is purely exposed to news about

future volatility: its return corresponds exactly to the change in expectations about volatility

at its maturity. Pure news about future expected volatility will therefore affect its return,

whereas purely transitory shocks to volatility that disappear before its maturity will not

affect it at all. Our results therefore show that news about future volatility commands a

small to zero risk premium in our data.

The results at the short end of the curve indicate that investors are willing to pay a large

premium to hedge realized volatility. What is new and surprising in this picture is the fact

that investors are willing to pay much less (economically and statistically zero) to hedge any

16One may also worry that some of our results depend on the interpolation between observed maturities.
To make sure this does not affect our results, we have constructed 6-month holding period returns of a claim
to variance 6 to 12 months forward (which we refer to as the 6/12 portfolio) as well as the 3-month return of
a claim to variance 3 to 6 months forward (the 3/6 portfolio). None of these returns depend on interpolated
data. The annualized Sharpe ratios on these two portfolios are statistically indistinguishable from 0, and
economically small and in fact slightly positive (0.11 for the 6/12 portfolio, with standard error 0.20, and
0.03 for the 3/6 portfolio, standard error 0.22), consistent with the results in the figure. Of course, the return
of the 1-month claim (Sharpe ratio of -1.3 as reported in the figure) also does not depend on interpolated
data.
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innovations in expected volatility. The estimated Sharpe ratio is zero (or even positive) at

every point in the curve above maturity 3 months. Moreover, these declining Sharpe ratios

are consistent with the findings of van Binsbergen and Koijen (2015), who find that Sharpe

ratios in a range of markets decline with maturity.17 Like them, we show below that our

results are difficult to reconcile with standard theories, thus further extending the puzzle

originally set forth by van Binsbergen, Brandt, and Koijen (2012).

3.3 Evidence from other markets

Figure 6 shows the term structure of prices and Sharpe ratios of variance forwards obtained

from the variance swap data compared to the synthetic claims for maturities up to 1 year.

While the curves obtained using options data seem noisier, the curves deliver the same

message: the volatility term structure is extremely steep at the very short end but quickly

flattens out for maturities above two months, and Sharpe ratios rapidly approach zero as the

maturity passes two months.18 Appendix Figure A.3 shows that we obtain similar results

with VIX futures.19,20

Our results also extend to international markets. Figure 7 plots average term structures

obtained from both variance swaps and synthetic option-based variance claims for the Euro

Stoxx 50, FTSE 100, CAC 40 and DAX indexes. Both panels of the figure show that the

international term structures have an average shape that closely resembles the one observed

for the US (the solid line in both panels), demonstrating that our results using US variance

swaps extend to the international markets.21

17The declining term structure of Sharpe ratios on short positions in volatility is consistent with the
finding of van Binsbergen, Brandt, and Koijen (2012) that Sharpe ratios on claims to dividends decline with
maturity, and that of Duffee (2011) that Sharpe ratios on Treasury bonds decline with maturity. For a
review, see van Binsbergen and Koijen (2015).

18Given the high liquidity of the options market, we might have expected option-based portfolios to be
less noisy. However, the synthetic variance portfolios load heavily on options very far out of the money
where liquidity is relatively low. This demonstrates another advantage of studying variance swaps instead
of options.

19VIX futures are not exactly comparable to variance swaps because they are claims on the V IX, not
on V IX2. A convexity effect makes the prices of claims on variance and volatility different, but the Figure
shows that it is quantitatively small.

20We have also compared our data to the CBOE’s 3-month and mid-term volatility indexes (VXV and
VXMT) and find that our data is nearly identical to those two series in the period when the CBOE calculates
them.

21In the appendix (Figure A.2) we also confirm that for the indexes for which we have both variance swap
prices and synthetic prices obtained from options, the two curves align well.
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4 Asset pricing

4.1 Reduced-form estimates

We begin by exhibiting our main pricing result in a simple reduced-form setting: investors

pay to hedge realized volatility but not shocks to expected volatility.

4.1.1 Extracting innovations

As usual in the term structure literature, we begin by extracting principal components from

the term structure of variance forwards. The first factor explains 97.1 percent of the variation

in the term structure and the second explains an additional 2.7 percent. The loadings of

the variance swaps on the factors are plotted in the top panel of Figure 8, while the time

series of the factors are shown in the bottom panel of the figure. The first factor captures

the level of the term structure, while the second measures the slope. As we would expect,

during times of crisis, the slope turns negative. The level factor captures the longer-term

trend in volatility and clearly reverts to its mean more slowly.

To extract shocks to variance and expectations, we estimate a first-order vector autore-

gression (VAR) with the two principal components and realized variance (RV ). Including

RV in the VAR allows us to separately identify shocks to the term structure of variance

swaps and transitory shocks to realized variance.

We rotate the three shocks using a Cholesky factorization where the first shock affects all

three variables, the second affects only the slope and RV , and the third shock affects only

RV . We will therefore refer to the third shock as the pure RV shock. The pure RV shock

allows us to measure the price of risk for a shock that has only a transitory effect on realized

variance and no effect on the term structure of variance swap prices, while the other two

rotated shocks affect both current realized variance and also expectations of future variance.

The factorization also normalizes all three shocks to have unit variance. Impulse response

functions are reported in Appendix Figure A.4.

4.1.2 Risk prices

We estimate risk prices for the three shocks using the Fama–MacBeth (1973) procedure on

1- to 12-month variance forwards.22 The top panel of Table 3 reports the loadings of each

forward return on the three orthogonalized shocks. Short-maturity forwards are exposed to

22The results are robust to estimating the risk prices using one- and two-step GMM.
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all three shocks with the expected signs. The higher maturities are mostly exposed to the

level and slope shocks, with essentially no exposure to the pure RV shock.

The bottom panel of Table 3 reports the estimated annualized risk prices. Of the three

shocks, only the pure RV shock has a statistically significant risk price. The risk price is

also economically highly significant: it implies that an asset that was exposed only to the

pure RV shock would earn an annualized Sharpe ratio of -2.69. Since the three shocks all

have the same standard deviation, the magnitudes of the risk prices are directly comparable.

Those for shocks 1 and 2 are four to six times smaller than that for the pure RV shock,

and thus economically far less important. Statistically, we can reject the hypothesis that the

price of risk for RV is the same as that for either shock 1 or 2 at the one-percent level.23

Table 3 thus shows that investors do not price shocks to the level and slope, but they

accept large negative returns to hedge transitory RV shocks. Since the level and slope factors

explain 99.9 percent of the variation in variance swap prices, they encode essentially all the

information in the term structure. The fact that the shocks to those two factors are unpriced

therefore implies that no forward-looking information about volatility that appears in asset

prices is significantly priced.

4.1.3 Controlling for the market return

One possible explanation for why realized variance is priced is that it provides a good hedge

for aggregate market shocks. To test that possibility, we add the market return as an

additional factor in the estimation.24 The first column of Table 4 shows that indeed the

forward volatility claims are heavily exposed to the market return. But when the pure RV

shock is included, the market return is no longer significantly priced. The R2 of the model

for the cross-section of average returns also rises from 38.3 to 99.8 percent when the pure

RV shock is included.

23Despite the good fit of the model in terms of R2, the GMM and the GRS test reject the null that all
the average pricing errors are zero. This is because the pricing errors, while being small relative to the
overall average returns of these contracts, are still statistically different from zero. The same applies to all
cross-sectional tests in the next sections.

24We add the market return as a test asset to impose discipline on its risk premium. For readability and
to ensure that the risk premium on the market is matched relatively closely, we increase the weight on the
market return by of factor of 12 as a test asset in our cross-sectional tests. That way, the market return
carries as much weight in the pricing tests as do all the variance claims combined. The market factor, though,
is still the monthly market return, as are all our forward variance returns.
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4.1.4 Upside and downside volatility

A natural question is whether investors desire to hedge all volatility shocks, or whether

they primarily desire to hedge volatility during downturns. Segal, Shaliastovich, and Yaron

(2015), for example, discuss such a model. Following Andersen and Bondarenko (2007), we

decompose the realized variance in a month, RVt, into an upper and a lower semivariance:

the integrated realized variances computed only when prices are above or below a threshold.

In particular, following Andersen and Bondarenko (2007) we construct the upper RV in each

month as

RV U
t =

∑
j∈t

(rj)
2Ij(Pj > P0)

where j ∈ t indicates days j in month t, Ij(Pj > P0) is an indicator that the futures price

of the index Pj of the underlying in day j is above the starting point P0 at the beginning of

the month. Similarly, we construct

RV D
t =

∑
j∈t

(rj)
2Ij(Pj ≤ P0)

Andersen and Bondarenko (2007) discuss two useful properties of these realized barrier

variances (or semivariances), which can be interpreted as the volatility of the upward and

downward price movements. First, the two components sum to RVt,

RVt = RV U
t +RV D

t

Second, the price of claims to RV U
t and RV D

t can be obtained from option prices in a

manner similar to how the V IX is computed. We refer to these two prices as V IXU
t and

V IXD
t . (V IXU

t )2 is the no-arbitrage price of a contract whose payoff is RV U
t+1, and (V IXD

t )2

is the no-arbitrage price of a contract whose payoff is RV D
t+1. Andersen and Bondarenko

(2007) also derive a relation between the three prices,

V IX2
t = (V IXU

t )2 + (V IXD
t )2

Finally, just as in the case of the VIX, we can compute the prices of the two claims for

different maturities and study the term structure.

Figure 9 plots the term structure of the variance forwards obtained from V IX, as well

as those for V IXU and V IXD. As before, maturity zero corresponds to the average RVt,

RV U
t and RV D

t , respectively. The slopes between the zero- and one-month maturities then

represent precisely the returns on the 30-day V IX, V IXU , and V IXD. We can see that
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most of the negative average return that investors are willing to accept to hold the VIX

comes from the extremely negative monthly return of the V IXD (about -30% per month),

while V IXU commands a return much closer to zero.25 This confirms the intuition that the

reason investors hedge realized volatility is due to its downside component (which Bollerslev

and Todorov (2011) show is dominated by downward jumps).

4.2 The predictability of volatility

Since the key result of the paper concerns the pricing of volatility shocks at different horizons,

a natural question is how much news there actually is about future volatility. The total risk

premium for assets that hedge volatility news – which we showed at the beginning of Section

3 to be insignificantly different from zero – is the product of the quantity of risk (how

much news about future volatility investors receive), and the price of this risk (how averse

investors are to such news). Perhaps the reason that investors are willing to pay little to

hedge volatility news is that the quantity of news is small. We show here that in fact investors

do receive news about future volatility and that they seem indifferent to that news.

First, note that the results in the previous section already explicitly focus on the price of

risk of volatility, rather than the quantity. The reported risk prices measure compensation

per unit of risk, so they are unaffected by how much news there is about future volatility.

If volatility were not very predictable, the quantity of news risk would be low, but the price

per unit of risk would still be estimated correctly from our cross-sectional regressions. So our

previous analysis already shows that the low risk premia are due to a low price of variance

news risk.26

It is also useful to remember that the sample mean Sharpe ratios are insignificantly

different from zero (and in fact positive) even for maturities as short as three months. But

there is very strong evidence in the literature that volatility is predictable three months

ahead – so that the result of zero risk premium cannot stem from zero quantity of news risk

at that horizon (see for example Andersen et al. (2003)). Indeed, the volatility literature

has demonstrated predictability at horizons much longer than three months.27

To quantify the magnitude of the predictability of volatility at different horizons Table

25Note that contrary to the case of the VIX, for V IXU and V IXD the slope between maturities above
one month cannot be interpreted exactly in terms of returns since the barrier is moving over time.

26Of course, the lower the amount of risk, the harder it is to estimate the price of risk; this effect is fully
captured by the standard errors on the estimates of the price of risk.

27Andersen et al. (2003), Ait-Sahalia and Mancini (2008), Bandi, Russell, and Yang (2008), and Brownlees,
Engle, and Kelly (2011) show that volatility is predictable based on lagged returns of the underlying and
past volatility. Campbell et al. (2014) focus on longer horizons (up to 10 years) and show that both the
aggregate price-earnings ratio and the Baa-Aaa default spread are useful predictors of long-run volatility.
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5 reports R2s from predictive regressions for realized volatility at different frequencies and

horizons. The first pair of columns focuses on forecasts of monthly realized variance, while

the second pair repeats the exercise at the annual frequency. The R2s for monthly volatility

range from 45 percent at the 1-month horizon to 20 percent at the 12-month horizon. In

predicting annual volatility, R2s range between 56 and 21 percent for horizons of 1 to 10

years.

The third pair of columns in Table 5 reports, as a comparison, the results of forecasts

of dividend growth.28 R2s for dividend growth are never higher than 9 percent. So in

the context of financial markets, there is an economically large amount of predictability of

volatility. The appendix takes an extra step beyond Table 5 and shows, using Fama and Bliss

(1987) and Campbell and Shiller (1991) regressions, that nearly all the variation in variance

swap prices is actually due to variations in expected volatility, rather than risk premia.

We conclude by noting that while there is ample evidence of the predictability of volatility

at the horizons relevant for this analysis (from 3 months upwards), the result that the risk

premium for volatility news is close to zero would have strong implications for macroeconomic

and financial models even if it was driven by low quantity of expected volatility risk. If there

is not much volatility news, then asset pricing models in which news about future volatility

plays an important role (like the ICAPM or several versions of the long-run-risks model)

would lose this source of priced risk; similarly the macro literature showing that volatility

news can drive the business cycle would seem irrelevant if there is no volatility news.

4.3 A no-arbitrage model

In this section, we extend the pricing results reported above by considering a more formal

estimation. We analyze a standard no-arbitrage term structure model for variance swaps.

The model delivers implications strongly supportive of our reduced-form results. Because

the no-arbitrage model uses the prices of the variance swaps, rather than just their returns,

and because it uses a full no-arbitrage structure, it is able to obtain much more precise

estimates of risk prices. We show that not only are the risk prices on the level and slope

factors statistically insignificant, but they are also economically small.

The no-arbitrage model has three additional advantages over the reduced-form analysis:

it explicitly allows for time-variation in the volatility of shocks to the economy and risk prices,

the standard errors for the risk prices take into account uncertainty about the dynamics of

the economy (through the VAR), and it links us more directly to the previous literature.

28We compare predictability of volatility to that of dividends since realized variance in each month is the
stochastic payment of the variance swap contract in that month.
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Furthermore, because the inputs to the estimation of the no-arbitrage model are the observed

variance swap prices rather than monthly returns, the results in this section do not rely on

any interpolation and we can simultaneously use the full time series from 1996 to 2013 and

every maturity from one month to 14 years.

4.3.1 Risk-neutral dynamics

As above, we assume that the term structure of variance swaps is governed by a bivariate

state vector (s2
t , l

2
t )
′. Rather than state the factors as a level and slope, we now treat them

as a short- and a long-term component, which will aid in the estimation process. s2
t is the

one-month variance swap price: s2
t = EQ

t [RVt+1]. The other state variable, l2t , governs the

central tendency of s2
t .

We begin by specifying the conditional risk-neutral mean of the states,

EQ
t


 s2

t+1

l2t+1

RVt+1


 =

 ρQs 1− ρQs 0

0 ρQl 0

1 0 0


 s2

t

l2t

RVt

+

 0

vQl
0

 (7)

where vQl is a constant to be estimated which captures the unconditional mean of realized

variance. l2t can be viewed as the risk-neutral trend of s2
t . The first two rows of (7) are the

discrete-time counterpart to the standard continuous-time setup in the literature, e.g. Egloff,

Leippold, and Wu (2010) and Ait-Sahalia, Karaman, and Mancini (2014).29 We diverge from

Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman, and Mancini (2014) in explicitly

specifying a separate process for realized variance, noting that it is not spanned by the other

shocks. The specification of a separate shock to RVt+1 allows us to ask how shocks to both

realized variance and the term structure factors are priced.30

Given the assumption that s2
t = EQ

t [RVt+1], the price of an n-period variance swap V Snt

is

V Snt = EQ
t

[
n∑
i=1

RVt+i

]
= EQ

t

[
n∑
i=1

s2
t+i−1

]
(8)

29For admissibility, we require that 0 < ρQs < 1, ρQl > 0, and vQl > 0. These restrictions ensure that
risk-neutral forecasts of s2

t and l2t , hence variance swap prices at various maturities, are strictly positive.
30From a continuous-time perspective, it is not completely obvious how to think about a ”shock” to realized

variance that is completely transitory. There are two standard interpretations. One is that the innovation in
RVt+1 represents the occurrence of jumps in the S&P 500 price. Alternatively, there could be a component of
the volatility of the diffusive component of the index that has shocks that last less than one month. At some
point, the practical difference between a jump and an extremely short-lived change in diffusive volatility is
not obvious. The key feature of the specification is simply that there are shocks to the payout of variance
swaps that are orthogonal to both past and future information contained in the term structure.
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which can be computed by applying (7) repeatedly, and which implies that V Snt is affine in

s2
t and l2t for any maturity.

4.3.2 Physical dynamics and risk prices

Define Xt ≡ (s2
t , l

2
t , RVt)

′. We assume that X follows a VAR(1) under the physical measure:31

 s2
t+1

l2t+1

RVt+1

 =

 0

vQl
0

+

 ρs 1− ρQs 0

0 ρl 0

ρs,RV 0 0


 s2

t

l2t

RVt

+ εt+1 (9)

εt+1 ∼ N


 0

0

0

 , Vt (Xt+1)

 (10)

In our main results, we follow Egloff, Leippold, and Wu (2010) and Ait-Sahalia, Karaman,

and Mancini (2014) and assume that the market prices of risk are proportional to the states,

so that the log SDF, mt+1, is

mt+1 − Et [mt+1] = Λ′tVt (Xt+1)−1/2 εt+1 (11)

where Λt =

 λsst

λllt

λRV st

 (12)

where the superscript 1/2 indicates a lower triangular Cholesky decomposition. The term

Vt (Xt+1)−1/2 standardizes and orthogonalizes the shocks εt+1. Λt thus represents the price

of exposure to a unit standard deviation shock to each component of Xt+1.

To maintain the affine structure of the model, we need the product Vt(Xt+1)1/2Λt to be

affine in Xt. The specification for Λt in (12) is therefore typically accompanied by a structure

for the conditional variance similar to that of Cox, Ingersoll, and Ross (1985),

Vt(Xt+1) =

 σ2
ss

2
t 0 σs,RV s

2
t

0 σ2
l l

2
t 0

σs,RV s
2
t 0 σ2

RV s
2
t

 (13)

which guarantees that Vt(Xt+1)1/2Λt is affine in Xt.
32

31Admissibility requires that vQl and the feedback matrix in (9) be non-negative, which ensures that the
forecasts of Xt, and hence future volatility, be strictly positive.

32It is important to note that the specifications of Λt in (12) and Vt(Xt+1) in (13) introduce tight re-
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4.3.3 Empirical results

The estimation uses standard likelihood-based methods. The appendix describes the details.

We use both Dataset 1 and Dataset 2, meaning that the number of variance swap prices

used in the estimation varies over time depending on availability.

Model fit Table 6 reports the means and standard deviations of the variance swap prices

observed and fitted by our model together with the corresponding root mean squared errors

(RMSE). The average RMSE across maturities up to 24 months is 0.73 annualized volatility

points (i.e. the units in Figure 1).33 For maturities longer than 24 months, since we do not

have time series of variance swap prices with fixed maturities for the entire sample, we cannot

report the sample and fitted moments for any fixed maturity. Instead, we stack all contracts

with more than 24 months to maturity into one single series and compute the RMSE from

the observed and fitted values of this series. The corresponding RMSE is reported in the

last row of Table 6. At 0.87 percentage points, it compares favorably with the RMSE for the

shorter maturities. Table 6 suggests that our models with two term structure factors plus

RV are capable of pricing the cross-section of variance swap prices for an extended range of

maturities. Even when maturities as long as 14 years are included in estimation, the data

does not seem to call for extra pricing factors.

Risk prices The steady-state risk prices in the model are reported in Table 7 along with

their standard errors. As in the previous analysis, we find clearly that it is the purely

transitory shock to realized variance that is priced (RV -risk). The Sharpe ratio associated

with an investment exposed purely to the transitory RV shock – analogous to the pure RV

shock above – is -1.70.

In the VAR analysis in the previous section, the pure RV shock had no immediate

impact on the level and slope factors, but it could potentially indirectly affect future expected

variance through the VAR feedback. In the no-arbitrage model, that effect is shut off through

the specification of the dynamics. That is, the RV shock here is completely transitory – it

has no impact on expectations of volatility on any future date. The other two shocks are

strictions on the difference Et(Xt+1) − EQ
t (Xt+1). In the appendix, we therefore consider two alternative

specifications for the variance process Vt (Xt+1) and the risk prices Λt that are more flexible in certain di-
mensions. The results, both in terms of point estimates and standard errors, are essentially identical across
the various specifications that we consider, so we report results for this specification here since it is most
common in the literature.

33When we exclude the financial crisis, using a sample similar to that of Egloff, Leippold, and Wu (2010),
we obtain an RMSE of 0.33 percentage points, which is nearly identical to their reported value. The increase
in fitting error in the full sample is, not surprisingly, brought about by the large volatility spikes that occurred
during the crisis.
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forced to account for all variation in expectations. The fact that the results are consistent

between the no-arbitrage model and the reduced-form analysis in the previous section helps

underscore the robustness of our findings to different modeling assumptions.

The short- and long-term factors earn risk premia of only -0.11 and -0.18, respectively,

neither of which is significantly different from zero. The lack of statistical significance is not

due to particularly large standard errors; the standard errors for the risk prices for the s2
t

and l2t shocks are in fact substantially smaller than that for the RV shock. Moreover, Sharpe

ratios of -0.11 and -0.18 are also economically small. For comparison, the Sharpe ratio of

the aggregate stock market in the 1996–2013 period is 0.43. So the risk premia on the short-

and long-term components of volatility are between 25 and 42 percent of the magnitude of

the Sharpe ratio on the aggregate stock market. On the other hand, the Sharpe ratio for

the RV shock is nearly four times larger than that for the aggregate stock market and 10 to

15 times larger than the risk prices on the other two shocks. Our no-arbitrage model thus

clearly confirms the results from the previous sections.

Time-series dynamics The estimated parameters determining the dynamics of the state

variables under the physical measure are (equation 9): s2
t+1

l2t+1

RVt+1

 =

 0

0.99∗∗∗

0

+

 0.82∗∗∗ 0.16∗∗ 0

0 0.98∗∗∗ 0

0.75∗∗∗ 0 0


 s2

t

l2t

RVt

+ εt+1

The key parameter to focus on is the persistence of l2t . The point estimate is 0.9814,

with a standard error of 0.0013. At the point estimate, long-term shocks to variance have

a half-life of 37 months. That level of persistence is actually higher than the persistence

of consumption growth shocks in Bansal and Yaron’s (2004) long-run risk model, and only

slightly smaller than the persistence they calibrate for volatility, 0.987. Our empirical model

thus allows us to estimate risk prices on exactly the type of long-run shocks that have been

considered in calibrations. As we discuss further below, the fact that we find that the

long-term shock to volatility is unpriced is strongly at odds with standard calibrations of

Epstein–Zin preferences where agents are strongly averse to news about future volatility.

5 Economic interpretation

The key message of our empirical analysis is that it was costless in our sample to hedge

news about future volatility, at horizons 3 months to 14 years. That result can be seen
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by simply inspecting the average term structure of forward variance prices, by calculating

Sharpe ratios on variance forwards, by estimating risk prices using Fama–MacBeth, and in

a no-arbitrage model of the term structure. The insignificant risk price on volatility news

immediately suggests that models based on standard calibrations of Epstein–Zin (1991)

preferences, where intertemporal hedging effects are central, will struggle to match the data.

To confirm that intuition, we simulate two models with Epstein–Zin preferences. The

first is the long-run risk model proposed by Drechsler and Yaron (2011), and the second is

a discrete-time version of the model with time-varying disaster risk proposed by Wachter

(2013). In both cases, we show that the models imply that the Sharpe ratios earned from

rolling over long-term forward variance claims are almost as negative as those earned from

holding just the one-month variance swap, counter to what we observe empirically in Figure

5. Furthermore, the models are unable to match the shape of the average term structure, in

both cases being much less concave than we observe in the data.

The lack of intertemporal hedging in the variance swap market suggests a myopic model

of investors. We therefore consider a simple model – based on Gabaix’s (2012) rare disaster

framework – in which investors have power utility and show that it is able to match the

features of the variance swap market that we have documented.34

5.1 Structural models of the variance premium

5.1.1 A long-run risk model

Drechsler and Yaron (2011), henceforth DY, extend Bansal and Yaron’s (2004) long-run risk

model to allow for jumps in both the consumption growth rate and volatility. DY show that

the model can match the mean, volatility, skewness, and kurtosis of consumption growth and

stock market returns, and generates a large 1-month variance risk premium that forecasts

market returns, as in the data. DY is thus a key quantitative benchmark in the literature.

34We do not explicitly consider here habit formation models as in Campbell and Cochrane (1999) because
conditional on the habit, the agent in that model behaves as a standard power utility investor. The habit
simply shifts the level of risk aversion over time. It does not cause investors to be averse to shocks to
volatility.

The power utility model that we examine is not necessarily the only model that can possibly explain the
data. Andries, Eisenbach, and Schmalz (2015) consider a model with highly exotic preferences and discuss
some evidence that it may be able to match our findings. Van Binsbergen and Koijen (2015) discuss other
recent theoretical developments.
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The structure of the endowment process is

∆ct = µ∆c + xt−1 + εc,t (14)

xt = µx + ρxxt−1 + εx,t + Jx,t (15)

σ̄2
t = µσ̄ + ρσ̄σ̄

2
t−1 + εσ̄,t (16)

σ2
t = µσ + (1− ρσ) σ̄2

t−1 + ρσσ
2
t−1 + εσ,t + Jσ,t (17)

where ∆ct is log consumption growth, the shocks ε are mean-zero and normally distributed,

and the shocks J are jump shocks. σ2
t controls both the variance of the normally distributed

shocks and also the intensity of the jump shocks. There are two persistent processes, xt and

σ̄2
t , which induce potentially long-lived shocks to consumption growth and volatility. We

follow DY’s calibration for the endowment process exactly.

Aggregate dividends are modeled as

∆dt = µd + φxt−1 + εd,t (18)

Dividends are exposed to the persistent but not the transitory part of consumption growth.

Equity is a claim on the dividend stream, and we treat variance claims as paying the realized

variance of the return on equities.

DY combine that endowment process with Epstein–Zin preferences, and we follow their

calibration. Because there are many parameters to calibrate, we refer the reader to DY for

the full details. However, the parameters determining the volatility dynamics are obviously

critical to our analysis. Note that the structure of equations (16) and (17) is the same as

the VAR in our no-arbitrage model in equation (9). The parameters governing volatility in

DY’s calibration and the corresponding values from our estimation are:

DY Estimates

ρσ 0.87 0.82

ρσ̄ 0.987 0.9814

stdev(εσ̄,t) 0.10 0.05

stdev(εσ,t + Jσ,t) 1.10 1.48

The two feedback coefficients, ρσ and ρσ̄, are nearly identical to our estimated values.

Their long-term component, σ̄2, has a persistence of 0.987, which compares favorably with

our estimate of 0.9814. Similarly, their calibration of ρσ = 0.87 is comparable to our es-

timate of 0.82. The calibration deviates somewhat more in the standard deviations of the

innovations.
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Overall, though, DY’s calibration implies volatility dynamics highly similar to what we

observe empirically – so we keep it exactly as in the original paper. The close match is

not surprising as DY’s model was calibrated to fit the behavior of the one-month VIX and

realized variance.

Given the high quality of DY’s calibration, if the long-run risk model fails to match the

term structure of variance swap prices, it is not because it has an unreasonable description

of the dynamics of volatility. Rather, we would conclude that the failure is due to the

specification of the preferences, namely Epstein–Zin with a representative agent.

5.1.2 Time-varying disaster risk

The second model we study is a discrete-time version of Wachter’s (2013) model of time-

varying disaster risk. In this case, consumption growth follows the process,

∆ct = µ∆c + σ∆cε∆c,t + J∆c,t (19)

where ε∆c,t is a mean-zero normally distributed shock and Jt is a disaster shock. The

probability of a disaster in any period is Ft, which follows the process

Ft = (1− ρF )µF + ρFFt−1 + σF
√
Ft−1εF,t (20)

The CIR process ensures that the probability of a disaster is always positive in the continuous-

time limit, though it can generate negative values in discrete time. We calibrate the model

similarly to Wachter (2013) and Barro (2006). Details of the calibration are reported in the

appendix. The model is calibrated at the monthly frequency. In the calibration, the steady-

state annual disaster probability is 1.7 percent as in Wachter (2013). σF is set to 0.0075 (εF

is a standard normal), and ρF = 0.871/12, which helps generate realistically volatile stock

returns and a persistence for the price/dividend ratio that matches the data. If there is no

disaster in period t, Jt = 0. Conditional on a disaster occurring, Jt ∼ N (−0.30, 0.152), as in

Barro (2006). Finally, dividends are a claim to aggregate consumption with a leverage ratio

of 2.8.35

Wachter (2013) combines this specification of disasters with Epstein–Zin preferences.

35The occurrence of a disaster shock implies that equity values decline instantaneously. To calculate
realized variance for periods in which a disaster occurs, we assume that the shock occurs over several days
with maximum daily return of -5 percent. For example, a jump of 20% would occur over 4 consecutive days,
with a 5% decline per day. This allows for a slightly delayed diffusion of information and also potentially
realistic factors such as exchange circuitbreakers. The small shocks ε∆c,t are treated as though they occur
diffusively over the month, as in Drechsler and Yaron (2011).
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One of her key results is that a model with time-varying disaster risk and power utility has

strongly counterfactual predictions for the behavior of interest rates and other asset prices.

She thus argues that time-varying disaster risk should be studied in the context of Epstein–

Zin preferences. We follow her in assuming the elasticity of intertemporal substitution is

1. To help the model match data for the variance claim returns, which the paper did not

originally targeted, we set risk aversion as high as possible to try to generate a large enough

1-month variance risk premium (which has been the focus of most previous literature on the

pricing of variance risk). We therefore set it to 3.6, as the model does not have a solution

when risk aversion is higher.36

5.1.3 Time-varying recovery rates

The final model we study is a version of Gabaix’s (2012) model of disasters with time-

varying recovery rates. Because the probability of a disaster is constant, power utility and

Epstein-Zin are equivalent in terms of their implications for risk premia. We use power utility

in our calibration, which eliminates the intertemporal hedging motives present in the two

previous models. In this model, the expected value of firms following a disaster is variable.

Specifically, we model the consumption process identically to equation (19) above, but with

the probability of a disaster, Ft, fixed at 1 percent per year (Gabaix’s calibration). Following

Gabaix, dividend growth is

∆dt = µ∆d + λε∆c,t − Lt × 1 {J∆c,t 6= 0} (21)

λ here represents leverage. 1 {·} is the indicator function. Dividends are thus modeled as

permanently declining by an amount Lt on the occurrence of a disaster. The value of L is

allowed to change over time and follows the process

Lt = (1− ρL) L̄+ ρLLt−1 + εL,t (22)

We calibrate L̄ = 0.5 and ρL = 0.871/12 as in the previous model, and εL,t ∼ N (0, 0.042),

which means that the standard deviation of L is 0.25. We set the coefficient of relative

risk aversion to 7 to match the Sharpe ratio on one-month variance swaps (as we did for

the time-varying disaster model; note that for the long-run risk model, there was no need

to adjust the calibration since the paper already targeted the behavior of the one-month

variance swap). Other than the change in risk aversion, our calibration of the model is

36The upper bound on risk aversion is a common feature of models in which the riskiness of the economy
varies over time.
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nearly identical to Gabaix’s (2012), which implies that we will retain the ability to explain

the same ten puzzles that he examines.37 He did not examine the ability of his model to

match the term structure of variance claims, so this paper provides a new test of the theory.

5.2 Results

We now examine the implications of the three models for the variance forward curve. Figure

10 plots population moments from the models against the values observed empirically. The

top panel reports annualized Sharpe ratios for forward variance claims with maturities from 1

to 12 months. Our calibration of Gabaix’s model with time-varying recovery rates matches

the data well: it generates a Sharpe ratio for the one-month claim of -1.3, while all the

forward claims earn Sharpe ratios of zero, similarly to what we observe in the data.

On the other hand, both models with Epstein–Zin preferences significantly underprice

variance risk at the short end and, at the same time, overprice risk at the longer end of the

variance curve. The Sharpe ratio on the one month forward is far smaller in these models (at

about 0.3) than in the data (at about -1.3). By contrast, both models generate Sharpe ratios

for claims on variance more than three months ahead that are counterfactually large, almost

as large as the one-month forward. In the data, instead, they are zero or even positive at all

horizons above 3 months.

The underpricing of risks at the short end is caused by the fact that these models do not

generate pricing kernels sufficiently volatile to give any asset a Sharpe ratio of 1.3. However,

simply increasing the volatility of the pricing kernel by increasing risk aversion will not solve

the problem, as it will simply increase the Sharpe ratio at all maturities and exacerbate the

mispricing at horizons longer than 3 months (more over, as we mentioned above, it is in fact

not possible to raise risk aversion further in Wachter’s (2013) model).

The economic intuition for the result is straightforward. If investors are risk-averse, then

periods of high expected future consumption volatility are periods of low lifetime utility.

And under Epstein–Zin preferences, periods with low lifetime utility are periods with high

marginal utility. Investors thus desire to hedge news about future consumption volatility,

and in these models forward variance claims allow them to do so. Moreover, in these models

volatility in all future periods (discounted at a rate close to the rate of pure time preference,

and therefore close to 1 in standard calibrations) affects lifetime utility, which is why investors

in these models pay nearly the same amount to hedge volatility at any horizon.

37In particular, he shows that the model can generate a high equity premium, a low risk-free rate, excess
volatility in stock returns, stock return predictability, a steep yield curve for nominal bonds, predictability
in bond returns, large corporate credit spreads, a premium on out-of-the-money puts, predictability of stock
returns from the put premium, and a value premium.
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The expected returns on the variance claims are closely related to the average slope of the

term structure. The bottom panel of Figure 10 reports the average term structure in the data

and in the models. The figure shows, as we would expect, that neither model with Epstein–

Zin preferences generates a curve that is as concave as we observe in the data. Instead, the

DY model generates a curve that is too steep everywhere (including on the very long end),

while the time-varying disaster model generates a curve that is too flat everywhere. On

the other hand, the average term structure in the model with time-varying recovery rates

qualitatively matches what we observe in the data – it is steep initially and then perfectly

flat after the first month.

The comparison between the calibrated models and the data reported in Figure 10 does

not take into account the statistical uncertainty due to the fact that we only observe variance

swap prices in a specific sample. To directly test the models against the data, we simulate

the calibrated models and verify how likely we would be to see a period in which the variance

swap curve looks like it does in our data (similar to the analysis in van Binsbergen and Koijen

(2015)). In particular, we focus on the ability of the models to match the steepness at both

ends of the forward variance curve.

Table 8 reports results from those simulations. We examine 215-month simulations to

compare to our full sample since 1996, and 70-month simulations to compare to the shorter

sample in which we have 10-year swaps available. For each simulation, we calculate the aver-

ages of the simulated values of (F 3
t − F 0

t ), (F 12
t − F 3

t ), and, in the long sample, (F 120
t − F 3

t ).

Table 8 reports the fraction of simulated samples in which the sample mean of (F 3
t − F 0

t ) is

at least as large as we see in the data, the sample mean of (F 12
t − F 3

t ) is smaller than in the

data, or the sample mean of (F 120
t − F 3

t ) is smaller than in the data. These fractions are

one-sided p-values: they measure the probability that the model would have generated slopes

as extreme as we observe in the data. Furthermore, the bottom rows report the fraction of

samples in which the models simultaneously generate slopes as high as we observe below

three months and as flat as we observe above three months. They are thus p-values for tests

of whether the models can match the observed concavity of the term structure.

The long-run risk model does a relatively good job of generating a large slope at the short

end – 20 percent of the long samples and 38 percent of the short samples are at least as

steep as in our data. However, the slopes after the three-month maturity struggle to match

the data – the sample mean of (F 12
t − F 3

t ) is as small as observed empirically in the long

sample less than 0.1 percent of the time. When we ask how many samples generate both

the steep slope below three months and the flat slope after three months, the p-value is less

than 0.005. In other words, the long-run risk model generates a large short-maturity slope,
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but significantly fails to match the flatness of the term structure after three months.

The model with time-varying disaster risk and Epstein–Zin preferences has the opposite

problem from the long-run risk model: it generates a relatively flat term structure at matu-

rities longer than three months, but it fails to match the steep slope observed below three

months. The p-values are similar to those for the long-run risk model – the probability that

the time-varying disaster model generates the steep slope below three months is less than

0.1 percent, while the probability that it generates a slope as flat as we see beyond three

months is 23 to 55 percent. In none of our simulations does the time-varying disaster model

simultaneously match the slopes both below and above three months.

Finally, table 8 shows that the model with time-varying recovery can in fact match

well both the slopes below and above three months. It has a slope as steep as we observe

empirically between 0 and 3 months in 70 percent of the short samples and 82 percent of the

long samples. It also has a slope after three months as flat as we observe empirically in 100

percent of the samples. It therefore matches the slopes both below and above three months

in 69 and 80 percent of the short and long samples, respectively.

To summarize, then, we can reject the long-run risk and time-varying disaster models

with p-values of less than 1 percent, while the time-varying recovery model is not rejected.

We thus take the results in figure 10 and table 8 as providing further support for Gabaix’s

model of time-varying recovery rates.

The main features of the models that affect their ability to match our data can be sum-

marized as follows. In models with Epstein–Zin preferences where agents have preferences

for early resolution of uncertainty, investors will pay to hedge shocks to expected future

consumption volatility, especially at long horizons. If the equity market is modeled as being

related to a consumption claim, then long-term forward variance claims should have large

negative returns because they provide hedge volatility news. But in the data, we observe

shocks to future expected volatility and find that their price is close to zero.

While it is true that there exist parameterizations of Epstein–Zin preferences for which

agents are not averse to bad news about future expected volatility, or even enjoy news about

high future volatility, these are degenerate or nonstandard cases (in the former, the model

collapses to power utility, and in the latter, agents have preference for late resolution of

uncertainty). The very motivation behind using Epstein–Zin preferences in asset pricing

models is to model investors who are averse to bad news about the future, i.e. agents that

have an intertemporal hedging motive. It is that force, generated by standard calibration of

Epstein–Zin preferences, with preference for early resolution of uncertainty, that is at odds

with the term structure of variance swaps.
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Models with power utility, or where the variation in expected stock market volatility is

independent of consumption volatility, solve that problem since investors are myopic and

shocks to future expected volatility are not priced. However, the models also need to explain

the high risk price associated with the realized volatility shock. In a power utility framework,

this can be achieved if states of the world with high volatility are associated with large drops

in consumption, as in a disaster model.

5.3 The behavior of volatility during disasters

In order for variance swaps to be useful hedges in disasters, realized volatility must be high

during large market declines. A number of large institutional asset managers sell products

meant to protect against tail risk that use variance swaps, which suggests that they or their

investors believe that realized volatility will be high in future market declines.38

In the spirit of Barro (2006), we now explore the behavior of realized volatility during

consumption disasters and financial crises using a panel data of 17 countries, covering 28

events. We obtain two results. First, volatility is indeed significantly higher during disasters.

Second, the increase in volatility is not uniform during the disaster period; rather, volatility

spikes for one month only during the disaster and quickly reverts. It is those short-lived but

extreme spikes in volatility that make variance swaps a good product to hedge tail risk.

We collect daily market return data from Datastream for a total of 37 countries since

1973. We compute realized volatility in each month for each country. To identify disasters,

we use both the years marked by Barro (2006) as consumption disasters and the years marked

by Schularick and Taylor (2012), Reinhart and Rogoff (2009) and Bordo et al. (2001) as

financial crises.39 Given the short history of realized volatility available, our final sample

contains 17 countries for which we observe realized volatility and that experienced a disaster

during the available sample. Table 9 shows for each country the first year of our RV sample

and the years we identify as consumption or financial disasters.

The first three columns of Table 9 compare the monthly annualized realized volatility

during disaster and non-disaster years. Column 1 shows the maximum volatility observed in

any month of the year identified as a disaster averaged across all disasters for each country.

Column 2 shows the average volatility during the disaster years, and column 3 shows the

average volatility in all other years.

Comparing columns 2 and 3, we can see that in almost all cases realized volatility is indeed

38In particular, see Man Group’s TailProtect product (Man Group (2014)), Deutsche Bank’s ELVIS prod-
uct (Deutsche Bank, 2010) and the JP Morgan Macro Hedge index.

39See Giglio et al. (2014) for a more detailed description of the data sources.
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higher during disasters. For example, in the US the average annualized realized volatility is

25 percent during disasters and 15 percent otherwise. Column 1 reports the average across

crises of the highest observed volatility. Within disaster years there is large variation in

realized volatility: the maximum volatility is always much higher than the average volatility,

even during a disaster. Disasters are associated with large spikes in realized volatility, rather

than a generalized increase in volatility during the whole period.

To confirm this result, in Figure 11 we perform an event study around the peak of

volatility during a disaster. For each country and for each disaster episode, we identify the

month of the volatility peak during that crisis (month 0) and the three months preceding

and following it. We then scale the volatility behavior by the value reached at the peak, so

that the series for all events are normalized to 1 at the time of the event. We then average

the rescaled series across our 28 events.

The figure shows that indeed, the movements in volatility that we observe during disasters

are short-lived spikes, where volatility is high for essentially only a single month. In the

single months immediately before and after the one with the highest volatility, volatility is

40 percent lower than its peak, and it is lower by half both three months before and after

the worst month.

6 Conclusion

This paper shows that it is only the transitory part of realized variance that is priced. That

fact is not consistent with a broad range of structural asset pricing models. It is qualitatively

consistent with a model in which investors desire to hedge rare disasters, but not news about

the future probability of disaster. Interestingly, the data is not consistent with all disaster

models. The key feature that we argue models need in order to match our results is that

variation in expected stock market volatility is not priced by investors, whereas the transitory

component of volatility is strongly priced.

The idea that variance claims are used to hedge crashes is consistent with the fact that

many large asset managers, such as Deutsche Bank, JP Morgan, and Man Group sell products

meant to hedge against crashes that use variance swaps and VIX futures. These assets have

the benefit of giving tail protection, essentially the form of a long put, but also being delta

neutral (in an option-pricing sense). They thus require little dynamic hedging and yield

powerful protection against large declines.

More broadly, shocks to expected volatility, such as that observed during the recent

debt ceiling debate, are a major driving force in many current macroeconomic models. If
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aggregate volatility shocks are a major driver of the economy, we would expect investors

to desire to hedge them. We find, though, that the average investor is indifferent to such

shocks. The evidence from financial markets is thus difficult to reconcile with the view that

volatility shocks are an important driver of business cycles or welfare.
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Figure 1: Time series of forward variance claim prices
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Note: The figure shows the time series of forward variance claim prices of different maturities. For
readability, each line plots the prices in annualized volatility terms, 100 ×

√
12× Fn

t , for a different n.
The top panel plots forward variance claim prices for maturities of 1 month, 3 months, and one year. The
bottom panel plots forward variance claim prices for maturities of 1 year, 5 years and 10 years. Both

panels also plot annualized realized volatility, 100×
√

12× F 0
t .
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Figure 2: Average forward variance claim prices
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Note: The figure shows the average prices of forward variance claims of different maturity, across different
periods. The top panel shows average prices between 2008 and 2013, when we observe maturities up to
10 years (Dataset 2). The bottom panel shows averages between 1996 and 2013, for claims of up to 1
year maturity (Dataset 1). In each panel, the ”x” mark prices of maturities we directly observe in the
data (for which no interpolation is necessary). All prices are reported in annualized volatility terms,

100×
√

12× Fn
t . Maturity zero corresponds to average realized volatility, 100×

√
12× F 0

t .
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Figure 3: Slope and curvature of the term structure of forward variance claims
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Note: The top panel plots the slope of the term structure of variance swaps (figure 2) at each maturity.
The bottom panel plots the curvature of the same curve at each maturity. Dotted lines are 95% confidence
intervals constructed using Newey-West with 6 lags.
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Figure 4: Subsample analysis of forward variance claims
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Note: The figure compares the average prices of forward variance claims for maturities up to 1 year, for
the two subsamples of the top and bottom panel of figure 2, as well as for the period that excludes the
financial crisis.
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Figure 5: Annualized Sharpe ratios for forward variance claims
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Note: The figure shows the annualized Sharpe ratio for the forward variance claims. The returns are
calculated assuming that the investment in an n-month variance claim is rolled over each month. Dotted
lines represent 95% confidence intervals. All tests for the difference in Sharpe ratio between the 1-month
variance swap and any other maturity confirm that they are statistically different with a p-value of 0.03
(for the second month) and < 0.01 (for all other maturities). The sample used is 1996-2013.
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Figure 6: Synthetic forward variance claims: prices and Sharpe ratios
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Note: See Figure 2. The solid line in the top panel plots average prices of forward variance claims
calculated using the formula for the VIX index and data on option prices from the CBOE. The dotted line
is the set of average prices of forward variance claims constructed from variance swap prices. The bottom
panel plots annualized Sharpe ratios for forward variance claims returns with prices calculated using the
VIX formula and CBOE option data. Dotted lines in the bottom panel represent 95% confidence intervals.
The sample covers the period 1996-2013.
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Figure 7: Average forward variance claim prices for international markets
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Note: The figure plots the average prices of forward variance claims as in Figure 2 for different interna-
tional indices. The series for the S&P 500 (both in the top and bottom panel) is obtained from variance
swaps (as in Figure 2). The top panel shows international curves obtained using option prices, using the
same methodology used to construct the VIX for the S&P 500 (as in Figure 6). Options data is from
OptionMetrics. The series cover FTSE 100, CAC 40, DAX, and STOXX 50, for the period 2006-2014.
The bottom panel shows international curves obtained using variance swaps on the FTSE 100, DAX, and
STOXX 50, for one year starting in April 2013. All series are rescaled relative to the price of the 3-month
forward variance price.
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Figure 8: Principal components of variance swap prices
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Note: The top panel plots the loadings of the variance swap prices on the level and slope factors (first
two principal components). The bottom panel plots the time series of the level and slope factors. Both
are normalized to have zero mean and unit standard deviation and are uncorrelated in the sample. The
sample covers the period 1996-2013.
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Figure 9: Decomposing the upward and downward volatility components
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Note: The solid thick line plots average prices of forward variance claims calculated using the formula for
the VIX index. The dashed line plots the forward prices of the downside component of the VIX, V IXD.
The thin solid line plots the forward prices of the upside component of the VIX, V IXU . All series are
constructed using option data from CBOE. The sample covers the period 1996-2013.
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Figure 10: Sharpe ratios and average term structure in different models
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Note: The top panel gives the population Sharpe ratios from the three models and the sample values
from the data. The bottom panel plots population means of the prices of forward claims. All the curves
are normalized to have the same value for the 3-month forward claim.
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Figure 11: Average behavior of RV during consumption disasters and financial crises
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Note: We calculate realized variance in each month of a crisis and scale it by the maximum realized
variance in each crisis. The figure plots the average of that scaled series for each country and crisis in
terms of months relative to the one with the highest realized variance.
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Table 1: Volume of variance swaps across maturities

Maturity (months) Volume (million vega) Volume (percentage)

1 402 6%
2 403 6%
3 78 1%

4-6 1037 14%
7-12 1591 22%
13-24 2371 33%
25-60 1315 18%
60+ 48 1%

Total 7245 100%

Note: Total volume of variance swap transactions occurred between March 2013 and June 2014 and
collected by the DTCC.

Table 2: Characteristics of returns

Maturity (months) Mean Std Min 25th p. Median 75th p. Max Skew Exc.Kurt.

1 -25.7 67.9 -85.5 -58.4 -40.2 -16.0 686.4 6.2 56.5
2 -5.8 47.7 -59.3 -32.9 -18.4 9.3 376.0 3.9 23.4
3 0.7 33.9 -46.1 -21.4 -5.3 14.5 249.4 2.7 14.1
4 0.6 27.4 -42.2 -17.3 -5.6 11.2 170.4 2.0 7.6
5 0.1 22.5 -37.3 -14.0 -3.7 9.8 126.7 1.6 5.2
6 0.5 19.6 -31.0 -12.2 -3.8 12.9 100.6 1.3 3.3
7 0.6 18.6 -31.4 -12.4 -2.5 11.0 90.7 1.1 2.5
8 0.7 17.4 -29.8 -11.4 -2.9 11.6 81.6 1.0 2.0
9 0.9 16.2 -27.7 -10.2 -1.9 9.2 74.6 0.9 1.7
10 1.1 15.6 -30.0 -9.6 -2.0 9.8 70.8 0.9 1.5
11 1.4 16.0 -32.6 -9.9 -1.9 11.2 69.7 0.9 1.3
12 1.8 17.4 -35.0 -10.3 -2.4 12.1 70.4 1.0 1.4

Note: The table reports descriptive statistics of the monthly returns for forward variance claims (in

percentage points). For each maturity n, returns are computed each month as Rn
t+1 =

Fn−1
t+1 −Fn

t

Fn
t

. Given

the definition that F 0
t = RVt, the return on a one-month claim, R1

t+1 is the percentage return on a
one-month variance swap.
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Table 3: Reduced-form pricing estimates

Panel A: Betas Shock 1 Shock 2 Pure RV

Maturities (months)

1 0.37 -0.19 0.33
2 0.39 -0.12 0.05
3 0.28 0.00 -0.02
4 0.22 0.04 -0.02
5 0.18 0.05 -0.01
6 0.15 0.06 0.00
7 0.13 0.06 0.00
8 0.12 0.06 0.00
9 0.11 0.06 0.00
10 0.11 0.06 0.00
11 0.11 0.06 0.00
12 0.11 0.06 0.00

Panel B: Risk Prices
Risk prices -0.67 -0.47 -2.69***

Standard error 0.45 0.66 0.46

Difference from Pure RV (p-value) < .001 < .001

R2 0.999

Note: Results of Fama–MacBeth regressions using the 12 forward claims as test assets and the three
rotated VAR innovations as pricing factors. Shock 1 has effects on all three factors; shock 2 affects only
the slope and RV, and pure RV only affects RV on impact. The top section reports betas on the three
factors. The bottom setion reports estimated risk prices and the Fama–MacBeth standard errors. ***
denotes significance at the 1-percent level. Risk prices are annualized by mutiplying by

√
12.
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Table 4: Pricing results for the CAPM

(1) (2)
CAPM CAPM + pure RV

Panel A: Betas Rm Pure RV Rm

VS, maturities

1 -7.21 0.35 -7.74
2 -6.93 0.07 -7.03
3 -5.04 0.00 -5.04
4 -3.97 0.00 -3.96
5 -3.14 0.00 -3.15
6 -2.59 0.01 -2.60
7 -2.32 0.01 -2.34
8 -2.13 0.01 -2.15
9 -2.03 0.01 -2.04
10 -2.01 0.01 -2.02
11 -2.06 0.01 -2.07
12 -2.17 0.00 -2.17

Market 1.00 0 1.00

Panel B: Risk Prices
Risk prices 0.0106*** -0.69*** 0.0051

Standard error 0.0034 0.11 0.0033

R2 0.383 0.998

Note: See Table 3. Pricing results for the CAPM and for the CAPM with pure RV. The test assets are
the 12 forward variance claims and the market portfolio. The market portfolio is given 12 times as much
weight as the variance claims to ensure that it is priced correctly in the estimation.

Table 5: Forecasting volatility at different horizons: R2

monthly RVt+n yearly RVt+n yearly ∆dt+n
Predictor: RVt RVt RVt RVt ∆dt ∆dt

with PEt, DEFt
√ √ √

Months Years Years
1 0.39 0.45 1 0.41 0.56 1 0.00 0.09
2 0.21 0.34 2 0.10 0.25 2 0.00 0.02
3 0.18 0.32 3 0.05 0.09 3 0.06 0.07
6 0.15 0.26 5 0.02 0.04 5 0.05 0.07
12 0.10 0.18 10 0.00 0.21 10 0.02 0.03

Note: The first column of the table reports R2 of predictive regressions of monthly volatility n months
ahead at the monthly frequency. The second column reports R2 of predictive regressions of yearly volatility
n years ahead at the yearly frequency. The second column reports R2 of predictive regressions of yearly
log dividend growth n years ahead at the yearly frequency. The left side of each column reports univariate
regressions using the lagged value of the target, while the right side of each column adds the market
price-earnings ratio and the default spread as predictors. The sample is 1926-2014.
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Table 6: Average prices and pricing errors for the no-arbitrage model

Maturity Sample Fitted RMSE

(months) Mean Std Mean Std
1 21.24 8.00 21.70 7.86 1.00
2 21.89 7.55 21.88 7.55 0.33
3 22.22 7.25 22.04 7.30 0.40
6 22.75 6.64 22.42 6.74 0.63
12 23.20 6.06 22.99 6.11 0.53
24 23.65 5.58 23.87 5.45 0.61
>24 0.87

Note: Prices are reported in annualized volatility terms. The RMSE is calculated using the deviation of
the fitted price from the sample price in annualized voaltility terms.

Table 7: Steady-state risk prices

Sources of risk Estimates Standard Error

s2
t -risk −0.11 0.31

l2t -risk −0.18 0.12

RV-risk −1.70∗∗∗ 0.48

Note: Estimates of steady-state risk prices from the no-arbitrage model. Risk prices are annualized by
multiplying by

√
12. *** denotes significance at the 1-percent level.

54



Table 8: Model tests using the variance swap data

70-month simulations, up to 12mo maturity

Long-run Time-varying Time-varying
risks disasters recovery

p-value p-value p-value
Simulated 3mo/RV slope ≥ empirical slope 0.20 <0.01 0.69
Simulated slope 12mo/3mo ≤ empirical slope <0.01 0.23 1.00
Simulated slope 120mo/3mo ≤ empirical slope - - -

Joint test: 3mo/RV≥ data and 12mo/3mo≤data <0.01 <0.01 0.69
Joint test: 3mo/RV≥ data and 120mo/3mo≤data - - -

215-month simulations, up to 120mo maturity

Long-run Time-varying Time-varying
risks disasters recovery

p-value p-value p-value
Model 3mo/RV slope ≥ empirical slope 0.38 <0.01 0.82
Model slope 12mo/3mo ≤ empirical slope 0.05 0.55 1.00
Model slope 120mo/3mo ≤ empirical slope 0.02 0.12 1.00

Joint test: 3mo/RV≥ data and 12mo/3mo≤data <0.01 <0.01 0.82
Joint test: 3mo/RV≥ data and 120mo/3mo≤data <0.01 <0.01 0.82

Note: Notes: We simulate 10,000 70- and 215-month samples from the three models (respectively, in the
top and bottom panels). In each simulation, we calculate 3-0 (RV), 12-3, and 120-3 month slopes of the
variance forward term structure. The numbers in the first row of each panel are the fraction of samples in
which the models generate a slope at the short end of the curve at least as large as observed empirically.
The second and third rows are the fraction of samples in which the models generate slopes at the long end
of the curve at least as flat as observed empirically. The bottom rows are the fraction of samples in which
both conditions are satisfied.
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Table 9: Realized volatility during disasters

Country Peak Vol. Mean Vol. Mean Vol. Sample Consumption Financial

during disaster during disaster outside disaster start year disasters crises

US 47.5 25.2 14.9 1926 1933 1929, 1984, 2007

UK 24.6 16.4 15.1 1973 1974, 1984, 1991, 2007

France 72.1 31.4 16.6 1973 2008

Japan 40.9 21.4 15.1 1973 1992

Australia 33.7 13.8 15.1 1973 1989

Germany 83.1 28.1 14.3 1973 2008

Italy 55.1 23.0 19.2 1973 1990, 2008

Sweden 52.3 27.7 19.5 1982 1991, 2008

Switzerland 67.1 27.4 12.1 1973 2008

Belgium 66.1 32.0 12.4 1973 2008

Finland 29.3 18.9 25.0 1988 1993 1991

South Korea 80.0 43.6 24.6 1987 1998 1997

Netherlands 77.7 33.2 14.7 1973 2008

Spain 69.4 30.5 17.1 1987 2008

Denmark 37.2 14.7 14.4 1973 1987

Norway 44.2 20.2 20.7 1980 1988

South Africa 36.9 17.8 18.5 1973 1977, 1989

Note: Characteristics of annualized monthly realized volatility during and outside disasters across coun-
tries. Returns data used to construct realized volatility for the US is from CRSP, for all other countries
from Datastream. Consumption disaster dates are from Barro (2006). Financial crisis dates are from
Schularick and Taylor (2012), Reinhart and Rogoff (2009) and Bordo et al. (2001).

56



A.1 Data quality

In this paper, we introduce two new datasets on variance swaps. Given that the datasets are

new in the literature, we perform here a number of tests to ensure the quality of the data.

Dataset 2 (which contains monthly quotes from Markit, aggregated from many dealers)

is constructed in the same way and by the same company as the CDS dataset from the same

firm; this CDS data is known to be a high-quality dataset, and is the most widely used

dataset in research on credit default swaps (Mayordomo, Pena, and Schwartz (2014)). In

addition, Markit provides data on the number of quotes obtained from individual dealers, a

measure of the depth of the market. The average number of quotes (11) is in the same range

(8-15) of the typical number of quotes for CDS spreads, indicating that approximately as

many large dealers trade trade in variance swaps as they trade in CDS.

Next, we note that unlike in the case of CDS, for the case of variance claims we actually

observe the prices in many related markets, which we use to validate our variance swap data.

Our data quality check follows four main steps.

1. We confirm that in both data sets prices display a large amount of month to month

variation, and the autocorrelations of price changes are close to zero for all maturities

(non-zero autocorrelations would indicate that prices are stale).

2. We check that the data in Dataset 1 and Dataset 2 correspond almost perfectly for the

dates and the maturities for which they overlap.

3. We check that our quotes correspond to actual trades we can observe for a period of

time (using data from DTCC on actual transactions).

4. We check the correspondance between variance swap, VIX, and VIX futures data,

which overlap for a substantial amount of time and maturities.

A.1.1 Check 1: Price changes in the two datasets

A first data quality check is to ensure that the quotes and prices are updated in a timely

way and do not contain stale information.1 To begin with, we verify that prices always

change month to month, across all datasets, all securities, and all months (with one single

exception in one month and for one maturity only out of 16,928 observations, i.e., in 0.006%

1For this analysis, we focus only on quotes we actually observe from the source, with no interpolation.
Interpolation is however needed for Markit data after 2008, where we observe fixed calendar date maturities.
For the Markit dataset, we therefore focus on the maturities around which we see most quotes, so that the
interpolation needed is minimal: 1,2,3, 6, 12, 24, 36, 60, 84, 120.
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of the data). This reflects the fact that our quotes are updated both by the dealers providing

quotes to Markit (Dataset 2), and by the hedge fund that kept the price records forming

Dataset 1.

A second check is whether prices changes are autocorrelated in any apparent way, in any

dataset and for any maturity (we have 6 maturities available in the raw data for the first

dataset, and 10 for the second one). Among the 16 cases, none of the autocorrelations are

greater than 0.14, nor statistically significant even at the 10% level. Delayed or incomplete

adjustment of reported prices may result in significant measured autocorrelation of price

changes, but we find no evidence of this in our data.

A.1.2 Check 2: Dataset 1 vs. Dataset 2

Next, we check the two datasets against each other. Dataset 1 contains monthly data since

1996, whereas Dataset 2 contains monthly data since 2006. For the period 2006-2013, the

two datasets overlap.

The average correlation of prices in the two data sets is 0.999, with the minimum cor-

relation for any maturity occurring for the 30-day maturity, where it drops to 0.997. Price

changes are also extremely highly correlated, mostly above 0.99 (with the minimum being

0.98).

We also check whether either of the two data sets predicts price changes in the other, a

sign of differing quality among the data sets. No price change in one data set significantly

or economically predicts price changes in the other data set.

We conclude that the two data sets essentially agree on all prices reported.

A.1.3 Check 3: Quotes vs. actual trades

As a third quality check, we compare the quotes from our main dataset to the prices of actual

transactions reported by the Depository Trust & Clearing Corporation (DTCC), which has

collected data on all trades of variance swaps in the US since 2013.2

Appendix Figure A.1 shows the distribution of the percentage difference between our

quotes and the transaction prices for different maturity baskets. Quotes and transaction

prices are in most cases very close, with the median absolute percentage difference across all

maturities approximately 1 percent. We conclude that our quotes reflect the prices at which

transactions occur with a high degree of accuracy.

2DTCC was the only swap data repository registered under the Dodd–Frank act to collect data on variance
swaps in 2013. The Dodd–Frank act requires that all swaps be reported to a registered data repository.
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A.1.4 Check 4: Variance Swaps vs. VIX vs. VIX Futures

As discussed in the paper, in addition to the two datasets on variance swaps we also observe a

term structure of synthetic variance swap prices (VIX) up to 12 months maturity, and of VIX

futures (which are exchange-traded contracts) up to 6 months maturity. The three data sets

come from entirely independent sources: variance swaps are traded over the counter, the VIX

is constructed using options, and VIX futures are exchange traded. These additional data

sources are affected by different liquidity and trading setups relative to variance swaps, and

if those were particularly important in this market one would expect to find large deviations

between these markets and the variance swap market. Instead, we show now that the three

markets move essentially together at all maturities.

A.1.4.1 Variance Swaps vs. the VIX

The correlation of variance swap prices with the VIX at corresponding maturities is above

0.99 at all maturities. The correlation of price changes is more noisy, but still 0.96 on

average across maturities and never below 0.94. None of the price changes in one dataset

helps in predicting price changes in another dataset, indicating that no dataset is reacting

to information later than the other.

A.1.4.2 Variance Swaps vs. VIX futures

Since VIX futures are claims to the VIX in n periods, they are equivalent to forward variance

claims with maturity n + 1 (apart of a small convexity adjustment due to the fact that the

payoff of VIX futures is expressed in volatility, not variance, units). The correlation of prices

is on average 0.993, and always at least 0.992. The correlation of price changes is 0.98 on

average, and always at least 0.94. No significant predictive relation exists between price

changes from the two sources, except that variance swaps predict VIX futures price changes

with a t-stat of 2.08 in only one case (one significant case out of the many predictive tests

we ran is not an indication that indeed our variance swap prices data is better than the VIX

futures data, as it is likely only due to noise).

All of our tests of data quality suggest that the variance swap data is high quality, and

displays no indication of bad reporting, stale prices, or differential price behavior due to

different liquidity, compared to the other data sources.
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A.2 Synthetic variance swap prices

We construct option-based synthetic variance claims for maturity n, V IX2
n,t using the meth-

ods described by the CBOE (2009) in their construction of the VIX index, using data from

Optionmetrics covering the period 1996 to 2012.

In particular, we construct V IX2
n,t for maturity n on date t as

V IX2
n,t ≡

2

n

∑
i

∆Ki

K2
i

exp (−nRn,t)P (Ki) (A.1)

where i indexes options; Ki is the strike price of option i; ∆Ki = Ki+1−Ki−1

2
unless i is the

first or last option used, in which case ∆Ki is just the difference in strikes between Ki and

its neighbor; Rn,t is the n-day forward yield (from Fama and Bliss (1987)); and P (Ki) is

the midpoint of the bid-ask spread for the out-of-the-money option with strike Ki. The

summation uses all options available with a maturity of n days. We deviate slightly here

from the CBOE, which drops certain options with strikes very far from the current spot. For

each t and n, we require the presence of at least 4 out-of-the-money calls and puts. We create

V IX2
n,t for all monthly maturities by interpolating between available option maturities, using

the same techniques as the CBOE.

Under the assumption that the price of the underlying follows a diffusion (i.e. does not

jump), it is the case that

V IX2
n,t = EQ

t

[ˆ t+n

t

σ2
jdj

]
(A.2)

≈ EQ
t

[
n∑
j=1

RVt+j

]
(A.3)

where σ2
t is the instantaneous volatility at time t.3 The second line simply notes that the

integrated volatility is approximately equal to the sum of squared daily returns (where the

quality of the approximation improves as the sampling interval becomes shorter). In other

words, when the underlying follows a diffusion, V IX2
n,t corresponds to the price of an idealized

variance swap where the squared returns are calculated at arbitrarily high frequency.

Given V IX2
n,t prices at the monthly intervals, we also construct forward variance claims,

V IXFn,t as

V IXFn,t = V IX2
n,t − V IX2

n−1,t (A.4)

3See Carr and Wu (2009).
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The forward prices obtained from options are very close to those obtained from variance

swaps. Figure 6 in the text compares the two curves for the S&P 500. Figure A.2 compares

the curves for the STOXX 50, FTSE 100 and DAX, and shows that the curves are similar

for international markets as well (though in that case there is more noise).

A.3 Decomposing the sources of variation of variance

swap prices

In this section we investigate whether the variation in variance swap prices is primarily driven

by changes in expected future volatility or changes in risk premia.4

Using the definition of forward variance claims, the following identity holds, for each

maturity n:

F n
t − F 0

t = [EtRVt+n −RVt] +

[
−Et

n−1∑
j=0

rn−jt+1+j

]
(A.5)

where rnt is the one-period return of the n-period forward claim. An increase in the n-

period forward variance price must predict either an increase in future realized variance or

lower future variance risk premia. Following Fama and Bliss (1987) and Campbell and Shiller

(1991), we can then decompose the total variance of F n
t −F 0

t into the component that predicts

future RV , and the component that captures movements in risk premia. Note that just as

in Fama and Bliss (1987) and Campbell and Shiller (1991), we perform this decomposition

in changes (predicting the change in volatility rather than the level of volatility), because

the previous empirical literature and our term-structure estimates of Section 4.3 highlight

the presence of a very persistent factor in the volatility process.

The right side of Table A.1 shows this decomposition for different maturities between

1 month and 1 year. We see that most of the variation in variance swap prices can be

attributed to movements in the expectation of future realized variance, not risk premia. In

particular, at horizons of 3 to 12 months, essentially all the variation in prices is due to

variation in expected volatility rather than variation in risk premia.

At the same time, we know from Table 2 and Figure 1 that prices of both short-term

and long-term claims vary substantially: this indicates that the expectation of future realized

variance changes dramatically over time. For example, the standard deviation of innovations

in the 12-month forward claim is 17 percent per year. Given the finding in this section that

the variance of F 12
t is driven entirely by changes in volatility expectations, we see that

4A similar exercise was conducted by Mixon (2007), using S&P 500 options to predict future implied
volatility.
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investors’ expectations of future volatility in fact vary substantially over time.

A.4 Estimation of the no-arbitrage model

In this appendix, we provide more details on the estimation of the no-arbitrage model. We

also report the estimated parameters and more detailed pricing results.

A.4.1 Estimation Strategy

For estimation purposes, a standard and convenient practice of the term structure literature

is to assume that some fixed-weights “portfolios” of VS prices are priced perfectly. These

portfolios in turn allow one to invert for the latent states which are needed in the computation

of the likelihood scores of the data.

A challenge in implementing this practice in our context is that for parts of our sample

the set of available maturities may change from one observation to the next. In the later

part of our sample, we use VS prices with maturities up to 14 years, whereas the longest

maturity for the earlier sample is only two years.

To tackle this issue, we maintain the assumption from the term structure literature

that the current term structure of the VS prices perfectly reveals the current values of

states. Nonetheless, we depart from the standard term structure practice by using some

time-varying-weights “portfolios” of VS prices in identifying the states at each point in time.

The portfolios weights are determined in a way to optimally accommodate different sets of

maturities at each point in the sample.

To begin, let Dt denote the vector of observed data obtained by stacking up the vector

of VS prices on top of the realized variance RVt. Because VS prices are affine in states, we

can write:

Dt = A+BXt. (A.6)

All entries of the last column of B, except for the last row, are zeros because VS prices are

only dependent on s2
t and l2t . In addition, since the last entry of Dt corresponds to RVt, the

last row of A is 0 and the last row of B is (0,0,1). Keep in mind that the length of Dt can

vary from time to time due to different maturity sets for the observed VS data.

We assume that Dt is observed with iid errors:

Do
t = Dt + et (A.7)

where Do
t denotes the observed counterpart of Dt. Adopting a standard practice in the
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term structure literature, we assume that the observational errors for the VS prices are

uncorrelated and have one common variance σ2
e . Because observed RVt is used in practice

to determine payoffs to VS contracts, it is natural to assume that RVt is observed without

errors. Combined, if a number of J VS prices are observed at time t, the covariance matrix

of et, Σe, takes the following form:

Σe =

(
IJ σ

2
e 0J×1

01×J 0

)
, (A.8)

where IJ denotes the identity matrix of size J .

We now explain how we can recursively identify the states. Assume that we already know

Xt. Now imagine projecting Xt+1 on Do
t+1 conditioning on all information up to time t. Our

assumption (borrowed from the term structure literature) that the current term structure

of the VS prices perfectly reveals the current values of the states implies that the fit of this

regression is perfect. In other the words, the predicted component of this regression, upon

observing Do
t+1,

Et(Xt+1) + covt(Xt+1, D
o
t+1)vart(D

o
t+1)−1(Do

t+1 − Et(Do
t+1)), (A.9)

must give us the values for the states at time t + 1: Xt+1. All the quantities needed to

implement (A.9) are known given Xt. Specifically, Et(Xt+1) = K0 +K1Xt and vart(D
o
t+1) =

Vt(Xt+1) + Σe where Vt(Xt+1) is computed according to each of our three specifications for

the covariance. Et(D
o
t+1) is given by A + BEt(Xt+1). And covt(Xt+1, D

o
t+1) is given by

Vt(Xt+1)B′. Clearly, the calculation in (A.9) can be carried out recursively to determine the

values of Xt for the entire sample.

Our approach is very similar to a Kalman filtering procedure apart from the simplifying

assumption that Do
t+1 fully reveals Xt+1. That is, Vt(Xt+1|Do

t+1) ≡ 0. In a term structure

context, Joslin, Le, and Singleton (2013) show that this assumption allows for convenient

estimation, yet delivers typically highly accurate estimates.

We can view (A.9) as some “portfolios” of the observed data Do
t+1 with the weights given

by: covt(Xt+1, D
o
t+1)vart(D

o
t+1)−1. As a comparison, whereas the term structure literature

typically choose, prior to estimation, a fixed weight matrix corresponding to the lower princi-

pal components of the observed data, we do not have to specify ex ante any loading matrix.

Our approach determines a loading matrix that optimally extracts information from the

observed data and, furthermore, can accommodate data with varying lengths.

As a byproduct of the above calculations, we have available the conditional means and
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variances of the observed data: Et(D
o
t+1) and Vt(D

o
t+1). These quantities allow us to compute

the log QML likelihood score of the observed data as (ignoring constants):

L =
∑
t

−1

2
||vart(Do

t+1)−1/2(Do
t+1 − Et(Do

t+1))||22 −
1

2
log|vart(Do

t+1)|. (A.10)

Estimates of parameters are obtained by maximizing L. Once the estimates are obtained,

we convert the above QML problem into a GMM setup and compute robust standard errors

using a Newey West matrix of covariance.

A.4.2 Alternative variance specifications

Constant variance structure

In the first alternative specification, we let Vt(Xt+1) be a constant matrix Σ0. Since both

Et(Xt+1) and EQ
t (Xt+1) are linear in Xt, Λt is also linear in Xt. We refer to this as the CV

(for constant variance) specification.

Flexible structure

It is important to note that the specifications of Λt in (12) and Vt(Xt+1) in (13) introduce

very tight restrictions on the difference: Et(Xt+1) − EQ
t (Xt+1). Simple algebra shows that

the first entry of the product Vt(Xt+1)1/2Λt is simply a scaled version of s2
t . This means that

the dependence of Et(Xt+1) and EQ
t (Xt+1) on l2t and RVt and a constant must be exactly

canceled out across measures. Similar arguments lead to the following restrictions on the

condition mean equation:

Et

 s2
t+1

l2t+1

RVt+1

 =

 0

vQl
0


︸ ︷︷ ︸

K0

+

 ρs 1− ρQs 0

0 ρl 0

ρs,RV 0 0


︸ ︷︷ ︸

K1

 s2
t

l2t

RVt

 . (A.11)

So in the CIR specification, the conditional mean equation only requires three extra

degrees of freedom in: ρs, ρl, and ρs,RV . The remaining entries to K0 and K1 are tied to

their risk-neutral counter parts. By contrast, all entries of K0 and K1 are free parameters

in the CV specification. Whereas CV offers more flexibility in matching the time series

dynamics of Xt, the parsimony of CIR, if well specified, can potentially lead to stronger

identification. However, this parsimony of the CIR specification, if mis-specified, can be
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restrictive. For example, in the CIR specification, RVt is not allowed to play any role in

forecasting X.

In the flexible specification, we would like to combine the advantages of the CV specifica-

tion in matching the time series dynamics of X and the advantages of the CIR specification

in modeling time-varying volatilities.

For time-varying volatility, we adopt the following parsimonious structure:

Vt(Xt+1) = Σ1 s
2
t , (A.12)

where Σ1 is a fully flexible positive definite matrix. This choice allows for non-zero covari-

ances among all elements of X.

The market prices of risks are given by:

Λt =Vt(Xt+1)−1/2(Et(Xt+1)− EQ
t (Xt+1)), (A.13)

where the superscript 1/2 indicates a lower triangular Cholesky decomposition. Impor-

tantly, we do not require the market prices of risks to be linear, or of any particular form.

This is in stark contrast to the CIR specification which requires the market prices of risks to

be scaled versions of states. As a result of this relaxation, no restrictions on the conditional

means dynamics are necessary. Aside from the non-negativity constraints, the parameters

K0, K1 that govern Et(Xt+1) = K0+K1Xt are completely free, just as in the CV specification.

In particular, RVt is allowed to forecast X and thus can be important in determining risk

premiums. We label this specification as the FLEX specification (for its flexible structure).

A.4.3 Additional estimation results

Table A.2 reports the risk neutral parameters of our no arbitrage models: ρQs , ρQl , and vQl .

As expected, these parameters are very strongly identified thanks to the rich cross-section

of VS prices used in the estimation. Recall that our risk-neutral construction is identical for

all three of our model specifications. As a result, estimates of risk neutral parameters are

nearly invariant across different model specifications.

The effect of including the crisis is that the estimates for ρQs and vQl are higher, whereas

the estimate of ρQs is the same. A higher vQl is necessary to fit a higher average VS curve. A

higher estimate for ρQs implies that risk-neutral investors perceive the short-run factor s2
t as

more (risk-neutrally) persistent. In other words, movements of the one-month VS price (s2
t )

will affect prices of VS contracts of much longer maturities.

We report the time series parameters – K0, K1, and other parameters that govern the
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conditional variance Vt(Xt+1) – for the CV, CIR, and FLEX specifications in Tables A.3,

A.4, and A.5, respectively.

The values of annualized steady-state risk prices implied by each model specification are

reported in A.6. Regardless of how the quantity of risk (Vt(Xt+1)) is modeled, RV-risk is

always very significantly negatively priced. The point estimates and standard errors are

similar across the various specifications for the variance process (and hence the physical

dynamics), emphasizing the results of our findings. The table also shows that the results are

similar regardless of whether the financial crisis is included in the estimation sample. Since

the financial crisis was a period when the returns on variance swaps were extraordinarily

high, excluding it from the data causes to estimate risk prices that are even more negative

than in the full sample.

A.5 Calibration and simulation of the models

This section gives the details of the three models analyzed in the main text.

A.5.1 Long-run Risk (Drechsler and Yaron)

Our calibration is identical to that of Drechsler and Yaron (DY; 2011), so we refer the reader

to the paper for a full description of the model. We have confirmed that our simulation

matches the moments reported in DY (tables 6, 7, and 8, in particular).

A.5.2 Time-varying disasters (Wachter)

The key equations driving the economy are

∆ct = µ∆c + σ∆cε∆c,t + J∆c,t (A.14)

Ft = (1− ρF )µF + ρFFt−1 + σF
√
Ft−1εF,t (A.15)

∆dt = λ∆ct (A.16)

where ε∆c,t and εF,t are standard normal innovations. This is a discrete-time version of

Wachter’s setup, and it converges to her model as the length of a time period approaches

zero. The model is calibrated at the monthly frequency. Conditional on a disaster occurring,

J∆c,t ∼ N (−0.3, 0.152) . The number of disasters that occurs in each period is a Poisson

variable with intensity Ft. The other parameters are calibrated as:
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Parameter Value

µ∆c 0.02/12

σF 0.0075

ρF 0.871/12

Parameter Value

σ∆c 0.02/sqrt(12)

λ 2.8

µF 0.017/12

In the analytic solution to the model, the price/dividend ratio for a levered consumption

claim takes the form pdt = z0 + z1Ft. The Campbell–Shiller approximation to the return

(which becomes arbitrarily accurate as the length of a time interval shrinks) is

rt+1 = θpdt+1 + ∆dt+1 − pdt (A.17)

= θpdt+1 + λ∆ct+1 − pdt (A.18)

It is straightforward to show analytically (the derivation is available on request) that

pdt = z0 + z1Ft (A.19)

In the absence of a disaster, we treat the shocks to consumption and the disaster probabil-

ity as though they come from a diffusion, so that the realized variance is θ2z2
0σ

2
FFt−1 +λσ2

∆c.

When a disaster occurs, we assume that the largest daily decline in the value of the stock

market is 5 percent. So, for example, a 30-percent decline would be spread over 6 days. The

results are largely unaffected by the particular value assumed. The realized variance when

a disaster occurs is then θ2z2
0σ

2
FFt−1 + λσ2

∆c − (0.05) J∆c,t (assuming J∆c,t ≤ 0).

The model is solved analytically using methods similar to those in DY. Specifically,

household utility, vt, is

vt = (1− β) ct +
β

1− α
logEt [exp ((1− α) vt+1)] (A.20)

α is set to 3.6 and β = 0.981/12. The recursion can be solved because the cumulant-generating

function for a poisson mixture of normals (the distribution of J∆c) is known analytically

(again, see DY).

The pricing kernel is

Mt+1 = β exp (−∆ct+1)
exp ((1− α) vt+1)

Et [exp ((1− α) vt+1)]
(A.21)

Asset prices, including those for claims on realized variance in the future, then follow imme-

diately from the solution of the lifetime utility function and cumulant-generating function

for J∆c. The full derivation and replication code is available upon request.
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We attempted to keep the calibration as close as possible to Wachter’s. The two differ-

ences are that we increase risk aversion somewhat in order to try to generate a larger 1-month

variance risk premium and that we use a normal distribution for the disasters rather than

the empirical distribution used by Wachter (to allow us to obtain analytic results). It is im-

portant to note that risk aversion cannot be increased past 3.6 because the model no longer

has a solution.

As with the DY model, we checked that the moments generated by our solution to the

model match those reported by Wachter. We confirm that our results are highly similar,

in particular for her tables 2 and 3, though not identical since we use slightly different risk

aversion and a different disaster distribution.

A.5.3 Disasters with time-varying recovery (Gabaix)

∆ct = µ∆c + ε∆c,t + J∆c,t (A.22)

Lt = (1− ρL) L̄+ ρLLt−1 + εL,t (A.23)

∆dt = λε∆c,t − L× 1 {J∆c,t 6= 0} (A.24)

The model is calibrated at the monthly frequency. Conditional on a disaster occurring,

J∆c,t ∼ N (−0.3, 0.152) . The probability of a disaster in any period is 0.01/12. The other

parameters are calibrated as:

Parameter Value

µ∆c 0.1/12

stdev(ε∆c) 0.02/
√

12

ρL 0.871/12

L̄ 0.5

stdev(εL) 0.04

λ 5

Agents have power utility with a coefficient of relative risk aversion of 7 and a time

discount factor of 0.961/12.
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Figure A.1: Quotes vs. transaction prices
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Note: The figure shows the distribution of percentage difference between variance swap price quotes and
actual transaction prices, computed as (transaction price - quote)/quote. The quotes are our main sample,
while transaction prices are obtained from the DTCC and begin in 2013. Each panel shows the histogram
for a different bucket of maturity of the variance swap contracts.
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Figure A.2: International forward variance claim prices from options and variance swaps
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Note: In each panel (corresponding to STOXX 50, FTSE 100 and DAX), the solid line plots average
prices of forward variance claims calculated using the formula for the VIX index and data on international
option prices from Optionmetrics. The dotted line plots the average prices of the same claims computed
from international variance swaps. The sample covers the period 2013:4-2014:2.
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Figure A.3: VIX futures vs. forward variance swap prices
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Note: the top panel plots the time series of the 2-month forward variance swap and the 1-month VIX
future price from the CME, in annualized volatility terms. The bottom panel plots the time series of the
7-month forward variance swap and the 6-month VIX future price from the CME, in annualized volatility
terms. The sample covers the period 2006:10-2012:9.
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Figure A.4: Impulse response functions of level, slope and RV
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Note: Each panel plots the response of one of the variables in the VAR (level, slope, and RV) to one of
the three orthogonalized shocks. The shocks are orthogonalized with a Cholesky factorization with the
ordering level-slope-RV.
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Table A.1: Predictive regressions

Horizon Predictor: Slope and Curvature Predictor: Fnt − F 0
t

(months) Dep var: RVt+n −RVt Dep var: RVt+n −RVt Dep var: −
∑n−1

j=0 r
n−j
t+1+j

R2 R2 coeff. R2 coeff.

1 0.08 0.17 0.63∗∗∗ 0.07 0.37∗

(0.22) (0.22)

2 0.22 0.18 0.71∗∗∗ 0.04 0.29∗

(0.17) (0.17)

3 0.31 0.24 0.83∗∗∗ 0.01 0.17

(0.14) (0.14)

6 0.36 0.34 0.95∗∗∗ 0.001 0.05

(0.09) (0.09)

12 0.38 0.41 1.10∗∗∗ 0.001 -0.10

(0.09) (0.09)

Note: Results of regressions forecasting changes in realized variance. The left side reports the R2 of a
regression of changes in realized volatility between month t and month t + n on the level and the slope
at time t. The right side reports the coefficients of univariate regressions of changes in realized volatility
(left column) and returns to volatility claims from t to t+ n (right column) on the difference between the
forward prices of maturity n (Fn

t ) and realized volatility (F 0
t ) at time t. * indicates significance at the

10-percent level, ** the 5-percent level, and *** the 1-percent level.

Table A.2: Risk neutral parameters

1996:2007 1996:2013

Specifications ρQs ρQl vQl ρQs ρQl vQl

CV
Est. 0.66∗∗∗ 0.99∗∗∗ 0.65∗∗∗ 0.83∗∗∗ 0.99∗∗∗ 1.01∗∗

Stderr. 0.06 0.00 0.14 0.07 0.01 0.48

CIR
Est. 0.68∗∗∗ 0.99∗∗∗ 0.65∗∗∗ 0.84∗∗∗ 0.99∗∗∗ 0.99∗∗

Stderr. 0.05 0.00 0.14 0.06 0.01 0.44

FLEX
Est. 0.66∗∗∗ 0.99∗∗∗ 0.64∗∗∗ 0.83∗∗∗ 0.99∗∗∗ 1.01∗∗

Stderr. 0.06 0.00 0.14 0.07 0.01 0.47

Note: The table reports the risk-neutral estimated dynamics of the term structure model, for the three
specifications CV, CIR and FLEX, and separately for the full sample (1996-2013) and the pre-crisis sample
(1996-2007).
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Table A.3: Time series parameter estimates for the CV specification

Sample K0 K1 Σ∗

1996:2007

Est.
6.49∗∗∗ 0.65∗∗∗ 0.14∗∗ 0.03 15.42∗∗∗ 0 0
3.36∗∗∗ 0.08 0.83∗∗∗ 0.02 3.87∗∗∗ 5.25∗∗∗ 0

1.98 0.56∗∗∗ 0 0.12 10.57∗∗∗ -2.62 14.08∗∗∗

Std. err.
2.42 0.08 0.07 0.12 3.23 - -
1.12 0.10 0.08 0.07 0.73 0.73 -
2.11 0.07 - 0.10 2.36 2.63 2.07

1996:2013

Est.
8.99∗∗∗ 0.56∗∗∗ 0.08 0.19∗∗ 20.59∗∗∗ 0 0
2.43∗∗∗ 0 0.91∗∗∗ 0.06∗∗∗ 3.26 7.04∗∗∗ 0
5.67∗ 0.20 0 0.57∗∗∗ 30.00∗∗ -2.14 25.49∗∗∗

Std. err.
2.48 0.13 0.05 0.09 5.07 - -
0.90 - 0.03 0.01 2.09 0.97 -
2.92 0.13 - 0.15 13.38 2.94 4.23

Note: The table reports the time-series parameter estimates for the CV specification. Σ∗ is the lower
triangular Cholesky decomposition of Σ0. For admissibility, K0 and K1 are constrained to be non-negative.
Those entries for which the non-negativity constraint is binding are set to zero and thus standard errors are
not provided. The table reports the estimates separately for the full sample (1996-2013) and the pre-crisis
sample (1996-2007).

Table A.4: Time series parameter estimates for the CIR specification

Sample K0 K1 Σ∗

1996:2007

Est.
0 0.66∗∗∗ 0.32∗∗∗ 0 5.16∗∗∗ 0 3.53∗∗∗

0.65∗∗∗ 0 0.99∗∗∗ 0 0 0.98∗∗∗ 0
0 0.69∗∗∗ 0 0 3.53∗∗∗ 0 6.74∗∗∗

Std. err.
- 0.07 0.05 - 1.82 1.18

0.14 - 0.00 - - 0.23 -
- 0.01 - - 1.18 - 1.69

1996:2013

Est.
0 0.82∗∗∗ 0.16∗∗ 0 7.17∗∗ 0 9.42∗

0.99∗∗ 0 0.98∗∗∗ 0 0 1.42∗∗ 0
0 0.75∗∗∗ 0 0 9.42∗ 0 23.56∗

Std. err.
- 0.04 0.06 - 2.84 - 5.42

0.44 - 0.00 - - 0.58 -
- 0.09 - - 5.42 - 12.88

Note: The table reports the time-series parameter estimates for the CIR specification. The diagonal
elements of Σ∗ correspond to the variance parameters σ2

s , σ2
l , and σ2

RV . The (3,1) entry of Σ∗ correspond
to the covariance parameter σs,RV . The table reports the estimates separately for the full sample (1996-
2013) and the pre-crisis sample (1996-2007).
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Table A.5: Time series parameter estimates for the FLEX specification

Sample K0 K1 Σ∗

1996:2007

Est.
2.31 0.74∗∗∗ 0.19∗∗ 0.01 2.26∗∗∗ 0 0

2.18∗∗∗ 0.09∗ 0.87∗∗∗ 0 0.58∗∗∗ 0.78∗∗∗ 0
0.11 0.60∗∗∗ 0 0.13 1.56∗∗∗ -0.24 2.04∗∗∗

Std. err.
1.49 0.08 0.08 0.08 0.42 - -
0.81 0.05 0.06 - 0.08 0.08 -
0.75 0.08 - 0.09 0.29 0.31 0.27

1996:2013

Est.
4.54∗∗∗ 0.68∗∗∗ 0.08∗∗ 0.19∗∗ 2.59∗∗∗ 0 0
1.37∗∗ 0 0.93∗∗∗ 0.07∗∗∗ 0.44∗ 1.09∗∗∗ 0
0.67∗∗∗ 0.36∗∗∗ 0 0.51∗∗ 3.32∗∗∗ -0.34 3.20∗∗∗

Std. err.
1.30 0.08 0.04 0.08 0.48 - -
0.55 - 0.02 0.02 0.23 0.12 -
0.05 0.11 - 0.20 1.24 0.43 0.48

Note: The table reports the time-series parameter estimates for the FLEX specification. Σ∗ is the lower
triangular Cholesky decomposition of Σ0. For admissibility, K0 and K1 are constrained to be non-negative.
Those entries for which the non-negativity constraint is binding are set to zero and thus standard errors are
not provided. The table reports the estimates separately for the full sample (1996-2013) and the pre-crisis
sample (1996-2007).

Table A.6: Annualized steady state risk prices, all specifications

1996:2007 1996:2013

Specifications Sources of risks Estimates Standard Error Estimates Standard Error

CV
s2
t -risk -0.23 0.22 -0.08 0.14
l2t -risk 0.05 0.18 -0.21 0.14
RV-risk −2.78∗∗∗ 0.65 −1.44∗∗∗ 0.43

CIR
s2
t -risk -0.18 0.36 -0.11 0.31
l2t -risk 0.04 0.14 -0.18 0.12
RV-risk −3.92∗∗∗ 0.91 −1.70∗∗∗ 0.48

FLEX
s2
t -risk -0.23 0.30 -0.14 0.16
l2t -risk 0.06 0.22 -0.17 0.19
RV-risk −3.17∗∗∗ 0.78 −1.69∗∗ 0.73

Note: Estimates of steady-state risk prices from the no-arbitrage model. Risk prices are annualized by
multiplying by

√
12. *** denotes significance at the 1-percent level. Results are reported for the full

sample (1996-2013), and restricted to 1996-2007.
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