How risky is consumption in the long-run? Benchmark estimates from a novel unbiased and efficient estimator

Ian Dew-Becker

Fuqua School of Business, Duke University

May 20, 2014
A large literature studies how risky the economy is. For Epstein–Zin preferences, correct measure is long-run standard deviation (LRSD) of consumption growth. Estimating the LRSD is difficult. This paper:

- Develops novel non-parametric estimator
- Estimates LRSD with data back to 1834
Epstein–Zin preferences:

\[V_t = \left\{ (1 - \beta) C_t^{1-\rho} + \beta E_t \left[V_{t+1}^{1-\alpha} \right]^{\frac{1-\rho}{1-\alpha}} \right\}^{\frac{1}{1-\rho}} \]

\(\rho \): inverse EIS

\(\alpha \): risk aversion
Price of risk (through the HJ bound) depends on volatility of the SDF
Assume log-normal, homoskedastic consumption growth
Standard deviation of the SDF:

\[
\text{std} \left(M_{t+1} \right) \approx \text{std} \left(\rho \Delta E_{t+1} \Delta c_{t+1} + (\alpha - \rho) \Delta E_{t+1} \sum_{j=0}^{\infty} \beta^j \Delta c_{t+1+j} \right)
\]

(exact with unit EIS)

\(\Delta c_t \): log consumption growth
Pricing kernel

Let $\beta \to 1$

\[
\text{std} \left(M_{t+1} \right) \approx \text{std} \left(\rho \Delta E_{t+1} \Delta c_{t+1} + (\alpha - \rho) \Delta E_{t+1} \sum_{j=0}^{\infty} \Delta c_{t+1+j} \right)
\]

- News about $\sum_{j=0}^{\infty} \Delta c_{t+1+j}$ is news about $c_{t+\infty}$
- Most calibrations: $\alpha \gg \rho$

\[
\text{std} \left(M_{t+1} \right) \approx \alpha \times LRSD
\]

- Implies the long-run component dominates
 - Long-run risk model is about making $\Delta E_{t+1} \sum_{j=0}^{\infty} \theta^j \Delta c_{t+1+j}$ very volatile
- $LRSD$ is key to calibrating any model with Epstein–Zin preferences
Table 1. Recent calibrations of the long-run standard deviation of consumption growth (annualized)

<table>
<thead>
<tr>
<th>Author and Year</th>
<th>Long-run SD</th>
<th>Moments matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell and Cochrane (1999)</td>
<td>1.50</td>
<td>SD(dc) 1947-1995</td>
</tr>
<tr>
<td>Gourio (2010)</td>
<td>2.00</td>
<td>SD(TFP), 1947-2010</td>
</tr>
<tr>
<td>Barro (2006), Wachter (2010)</td>
<td>2.00</td>
<td>SD(dy) 1954-2004, international</td>
</tr>
<tr>
<td>Tallarini (2000)</td>
<td>2.30</td>
<td>SD(dc), 1948-1993</td>
</tr>
<tr>
<td>Mehra and Prescott (1985)</td>
<td>3.16</td>
<td>SD(dc) 1889-1978</td>
</tr>
<tr>
<td>Abel (1990)</td>
<td>3.60</td>
<td>SD(dc) 1889-1978</td>
</tr>
<tr>
<td>Barberis, Huang, and Santos (2001)</td>
<td>3.80</td>
<td>SD(dc), 1889-1985</td>
</tr>
<tr>
<td>Bansal, Kiku, and Yaron (2008)</td>
<td>4.54</td>
<td>Annual SD(dc), autocorrelations, 1929-2008</td>
</tr>
<tr>
<td>Drechsler and Yaron (2011)</td>
<td>4.83</td>
<td>Annual SD(dc), autocorrelations, 1929-2006</td>
</tr>
<tr>
<td>Campanale, Castro, and Clementi (2010)</td>
<td>5.20</td>
<td>SD(dy), 1947-2005</td>
</tr>
<tr>
<td>Bansal and Yaron (2004);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Croce (2010)</td>
<td>8.05</td>
<td>Annual SD(dTFP), 1947-2010</td>
</tr>
<tr>
<td>Kaltenbrunner and Lochstoer (2010)</td>
<td>8.22</td>
<td>SD(dc), SD(dc)/SD(dy)</td>
</tr>
<tr>
<td>Colacito and Croce (2011)</td>
<td>9.02</td>
<td>SD(dc), currency movements</td>
</tr>
</tbody>
</table>
LRSD appears frequently in econometrics:

- LRSD is the std. dev. of innovations to the Beveridge–Nelson trend (martingale component of c_t)
- LRSD determines standard errors in OLS and GMM (e.g. Newey–West estimator)
- Square root of spectral density at frequency zero

Large literature on estimating LRSD
Smoothed periodogram

- Spectral density is $f(\omega)$

\[
LRSD = \sqrt{f(0)}
\]

Need to estimate $f(0)$

- Periodogram is the sample spectrum
 - Defined only at $T-1$ frequencies
 - Measured with error

- Smoothed periodogram estimator:

\[
\hat{f}(0) = \sum_{k=0}^{T-1} K(\omega_k) p(\omega_k)
\]
Benchmark model has strongly peaked spectrum.
Bias and variance

\[\text{bias} \approx \frac{1}{2} f''(0) \int_{-\pi}^{\pi} \omega^2 K(\omega) \, d\omega \]

\[\text{variance} \approx \frac{4\pi}{T} f(0)^2 \int_{-\pi}^{\pi} K(\omega)^2 \, d\omega \]

- More peaked kernel:
 - Reduces bias
 - Increases variance

- Changing NW lag length moves along bias/variance tradeoff

- Can we expand the frontier? Yes.
Bias and variance

\[
\text{bias} \approx \frac{1}{2} f'''(0) \int_{-\pi}^{\pi} \omega^2 K(\omega) \, d\omega
\]

\[
\text{variance} \approx \frac{4\pi}{T} f(0)^2 \int_{-\pi}^{\pi} K(\omega)^2 \, d\omega
\]

- If \(K(\omega) \) can be negative, can set approx. bias to zero
- This paper:
 - Set bias to zero
 - Minimize variance
 - Similar to Epanechnikov kernel
- Call it the "high-order kernel"
 - Can then extrapolate to low frequencies
 - Yields lower bias given variance
- High-order estimator yields:
 - Almost exact CI coverage
 - Superior bias/variance tradeoff
Now apply high-order estimator to the data

Three samples:
- Post-war quarterly
- Post-1929 annual
- Post-1834 annual (Barro and Ursua)
Long-run standard deviation estimates and confidence intervals

Quarterly data, 1947–2013
- KL-2010 (8.22)
- BY-2004 (6.28)
- BKY-2010 (4.54)

Annual data, 1929–2012
- 6.61 (95%)
- 5.60 (90%)

Annual data, 1834–2012
- 5.83 (95%)
- 5.36 (90%)

Methods:
- ARMA(4,4)
- ARMA(1,1)
- High-order kernel
- Full-sample point estimate: 4.14% per year
- Post-war data much less volatile
- Conservative LRR calibrations look reasonable
- Parametric estimators yield *much* tighter CI
Table 1. Recent calibrations of the long-run standard deviation of consumption growth (annualized)

<table>
<thead>
<tr>
<th>Study</th>
<th>Long-run SD</th>
<th>Moments matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell and Cochrane (1999)</td>
<td>1.50</td>
<td>SD(dc) 1947-1995</td>
</tr>
<tr>
<td>Gourio (2010)</td>
<td>2.00</td>
<td>SD(TFP), 1947-2010</td>
</tr>
<tr>
<td>Barro (2006), Wachter (2010)</td>
<td>2.00</td>
<td>SD(dy) 1954-2004, international</td>
</tr>
<tr>
<td>Tallarini (2000)</td>
<td>2.30</td>
<td>SD(dc), 1948-1993</td>
</tr>
<tr>
<td>Mehra and Prescott (1985)</td>
<td>3.16</td>
<td>SD(dc) 1889-1978</td>
</tr>
<tr>
<td>Abel (1990)</td>
<td>3.60</td>
<td>SD(dc) 1889-1978</td>
</tr>
<tr>
<td>Barberis, Huang, and Santos (2001)</td>
<td>3.80</td>
<td>SD(dc), 1889-1985</td>
</tr>
<tr>
<td>Bansal, Kiku, and Yaron (2008)</td>
<td>4.54</td>
<td>Annual SD(dc), autocorrelations, 1929-2008</td>
</tr>
<tr>
<td>Drechsler and Yaron (2011)</td>
<td>4.83</td>
<td>Annual SD(df), autocorrelations, 1929-2006</td>
</tr>
<tr>
<td>Campanale, Castro, and Clementi (2010)</td>
<td>5.20</td>
<td>SD(dy), 1947-2005</td>
</tr>
<tr>
<td>Bansal and Yaron (2004); Croce, Lettau, and Ludvigson (2010)</td>
<td>6.28</td>
<td>Annual SD(dc), autocorrelations, 1929-1998</td>
</tr>
<tr>
<td>Croce (2010)</td>
<td>8.05</td>
<td>Annual SD(df), 1947-2010</td>
</tr>
<tr>
<td>Kaltenbrunner and Lochstoer (2010)</td>
<td>8.22</td>
<td>SD(dc), SD(dc)/SD(dy)</td>
</tr>
<tr>
<td>Colacito and Croce (2011)</td>
<td>9.02</td>
<td>SD(dc), currency movements</td>
</tr>
</tbody>
</table>
Figure 4. Rolling LRSD estimates, 60-year window
Conclusion

- Long-run standard deviation is key moment for models with Epstein–Zin preferences
- Develop novel estimator: lower variance, better confidence interval coverage
- Delivers benchmark estimates of LRSD