
How risky is consumption in the long-run? Benchmark

estimates from a robust estimator∗

Ian Dew-Becker

Northwestern University

July 16, 2015

Abstract

The long-run standard deviation of consumption growth is a key moment in deter-

mining risk premia when agents have Epstein—Zin preferences. This paper studies a new

estimator of the long-run standard deviation shown to provide a superior bias/variance

trade-off and better confidence interval coverage than previous methods. In the post-

war period the long-run standard deviation of consumption growth is estimated to be

2.5 percent per year with an upper bound to the 95-percent confidence interval of 4.9

percent. The analogous values in the longest available sample are 4 and 5.6 percent.

These values can be taken as benchmarks for future calibrations.

1 Introduction

The goal of endowment- and production-economy asset pricing is to find a process for the

stochastic discount factor that is consistent with both asset prices and the observed con-

sumption process (or the dynamics of other variables determining state prices, e.g. leisure or
∗Email: ian.dew-becker@kellogg.northwestern.edu. This paper was previously circulated under the title,

"Estimates of the volatility of the permanent component of consumption and their implications for asset
pricing." I appreciate helpful comments and discussions from John Campbell, Stefano Giglio, Cam Harvey,
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a reference point of some sort). In representative-agent endowment-economy models, there

are two degrees of freedom for determining the pricing kernel: preferences and the endow-

ment process. This paper measures the volatility of the endowment process to help guide

future calibrations.

Epstein—Zin (1991) preferences have recently become dominant in preference-based asset

pricing models. Under Epstein—Zin preferences, risk premia are driven by the behavior of

consumption growth at the very lowest frequencies (see Dew-Becker and Giglio, 2013, for an

extensive discussion). But while it is widely understood that it is important to match the

persistence in consumption growth when calibrating models, there are many ways to measure

persistence. Should we ask that models match quarterly or annual autocorrelations? Should

they match just the first autocorrelation or a number of longer-term autocorrelations?

Hansen and Jagannathan (1991) show that the maximal Sharpe ratio available in the

economy is equal to the standard deviation of the pricing kernel divided by the gross risk-

less rate (which is nearly equal to 1). For a consumer with Epstein—Zin preferences and

log-normal, homoskedastic consumption growth, the standard deviation of the stochastic

discount factor is approximately

std (Mt+1) ≈ std

(
ρ∆Et+1∆ct+1 + (α− ρ) ∆Et+1

∞∑
j=0

θj∆ct+1+j

)
(1)

where ct is log consumption, ρ is the inverse elasticity of intertemporal substitution (EIS), α

is the coeffi cient of relative risk aversion, and θ is a parameter slightly less than 1 that comes

from a log-linearization.1 Et is the expectation operator conditional on information available

on date t, ∆ is the first-difference operator, and ∆Et+1 denotes the change in expectations.2

In many recent calibrations of macro and finance models, the inverse EIS, ρ, is small relative

to risk aversion, α, and so the long-run component drives the variance of the SDF, thus

1θ is approximately equal to the time discount factor in the agent’s utility function. The approximation
is derived by Restoy and Weil (1998). Hansen, Heaton, and Li (2008) derive a similar result.

2Equation (1) is exact when ρ = 1.
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determining the Hansen—Jagannathan (1991) bound. In the limiting case where ρ → 0 and

θ → 1,

std (Mt+1)→ α× std
(

∆Et+1

∞∑
j=0

∆ct+1+j

)
(2)

The standard deviation term in (2) is often referred to as the long-run standard deviation

(LRSD) of consumption growth. We can think of (2) as the case where households are

completely indifferent to when consumption occurs, since the EIS is infinite and the pure

rate of time preference approaches zero. The standard deviation of the SDF is equal to risk

aversion —the price of risk —multiplied by the long-run standard deviation of consumption

growth —the quantity of risk.

While a number of papers have discussed the behavior of the first few autocorrelations

of consumption growth (e.g. Bansal, Kiku, and Yaron, 2012; Beeler and Campbell, 2012),

the long-run standard deviation in (2) depends on the sum of every autocorrelation. And

in fact, studying only the first handful of autocorrelations can lead to highly misleading

results. For example, an MA(4) process with the same four quarterly autocovariances as the

ARMA(1,1) process used by Bansal and Yaron (2004) would yield a pricing kernel with a

standard deviation 33 percent smaller than what is obtained under their actual ARMA(1,1)

process.

The consumption-based asset pricing literature uses an extraordinarily broad range of

calibrations for the LRSD. Table 1 summarizes some representative publications. The cali-

brated values of the LRSD range from 1.5 to 9 percent per year. To obtain a Sharpe ratio

of 30 percent per year (consistent with the post-war equity premium), the lowest LRSD’s

would require risk aversion of 20, while the highest require risk aversion of only 3.3. This

paper asks what a good benchmark value and confidence interval is to help understand how

reasonable these calibrations are and to guide future work.

There is a large literature on the estimation of the LRSD in both parametric and non-

parametric settings. In this paper I restrict my attention to non-parametric methods both

because they are generally robust to heteroskedasticity and non-normality in ways that
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parametric methods often are not, and also because they take seriously the fact that we do

not know the true dynamic process driving consumption growth.

The LRSD is the square root of the spectral density at frequency zero, so non-parametric

methods use low frequency information from the sample spectrum to estimate the LRSD,

while leaving the higher-frequency behavior of consumption growth unconstrained. A good

estimator of the LRSD should be accurate for a wide range of specifications of consumption

growth. The long-run risks literature following Bansal and Yaron (2004) argues that there

may be a small and highly persistent component in consumption growth. That type of

process leads to poor small-sample properties for many spectral density estimators because

it induces a large and narrow peak in the spectrum. The goal of this paper is not to estimate

the long-run risk model, but it will be frequently used as a benchmark test of the accuracy of

the estimators. I show that standard methods (e.g. Newey and West, 1987) deliver estimates

in this setting that have large mean squared errors and misleading confidence intervals with

poor coverage of the true value of the LRSD.

While there are recent estimators in the literature (Kiefer and Vogelsang, 2005; Müller,

2007) that are designed to be robust to strongly peaked spectra as in the long-run risks model,

they tend to have high variances in their most robust form. I therefore use an alternative

estimator that I show has superior performance to other recent proposals across a wide

range of specifications for consumption growth, including when there is a highly persistent

component.

It is well known that the quadratic spectral (QS) kernel gives the smallest mean squared

error among all non-negative spectral density estimators. However, in the presence of a

large peak in the spectrum, non-negative estimators tend to be biased downward and their

confidence intervals have poor coverage. The estimator I propose in this paper is similar to

the QS kernel, but it dispenses with the non-negativity constraint, which helps reduce bias.

I therefore refer to it as the reduced-bias quadratic spectral (RQS) kernel.

Both asymptotically and in small samples, the RQS estimator improves the bias/variance
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trade-offcompared to the QS kernel and other recent estimators. In small-sample simulations

models with long-run risks, long memory, and jumps in consumption growth, I show that

the RQS estimator has better confidence interval coverage than the other robust estimators

that have been proposed recently.

The next section of the paper estimates the LRSD of consumption growth in a range of

data samples. In the post-war sample, the LRSD is estimated to be 2.5 percent per year,

which is on the lower end of the calibrations reported in Table 1. When we move to annual

data going back to 1929, the estimate of the LRSD rises to 3.5 percent per year. Barro

and Ursua’s (2010) annual series on consumption growth since 1834 delivers an LRSD of 4.1

percent. While an annual LRSD of 4.1 percent is substantially higher than what we observe

in the post-war data, it is still smaller than every calibration in the long-run risks literature

reviewed in Table 1, and less than half the magnitude of the most volatile calibrations. The

upper end of the confidence interval when we use the Barro—Ursua data is 5.6 percent, while

the upper limit with post-war data is 4.9 percent per year. An upper bound of 5.6 percent

for the LRSD captures more recent calibrations (e.g. Bansal, Kiku, and Yaron, 2012), but

rejects the original long-run risks calibration.

Given the large changes in the estimated LRSD in the sample, it is impossible to make a

single conclusive statement about how models should be calibrated. Production models are

often designed to match the post-war economy. For example, many assume that the economy

is not on a gold standard, and when price stickiness is included it is usually calibrated based

on data from the past few decades. The behavior of interest rates and inflation, in particular,

differ substantially between pre- and post-war data. For a model that is calibrated to match

recent features of the data, it is natural to use the post-war estimates of the LRSD as a

benchmark. On the other hand, some studies are meant to capture longer-run shifts in the

structure of the economy. For example, endogenous growth models featuring large structural

shifts, or models yielding events like the Industrial Revolution, would sensibly want to match

the estimates of the LRSD obtained from the Barro—Ursua data.
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Volatility clearly varies substantially over time. But the approximation for the Hansen—

Jagannathan bound in (2) holds with homoskedastic consumption growth, and the majority

of the models in the literature (e.g. summarized in table 1) are homoskedastic. So how

does heteroskedasticity affect the analysis? First, I show that the approximation (2) has

similar accuracy in Bansal and Yaron’s (2004) calibration regardless of whether we include

their heteroskedasticity or not.3 In Bansal, Kiku, and Yaron’s (2012) calibration, stochastic

volatility has much larger effects, but the LRSD is still important for determining how risk

prices vary across calibrations —variation in the LRSD induces similarly sized movements in

the Hansen—Jagannathan bound regardless of whether volatility is constant. Moreover, the

non-parametric estimators I study are fully robust to heteroskedasticity and non-normality.

Nevertheless, it is important to note here that the LRSD is certainly not the only feature

of the consumption process that determines the standard deviation of the pricing kernel.

Substantial heteroskedasticity, as in Bansal, Kiku, and Yaron (2012), or time-variation in

disaster risk can certainly also affect the volatility of the pricing kernel, in which case equation

(2) does not hold exactly. In any case, though, the LRSD is a key moment, even if it is not

always the only feature of the world that matters.

The remainder of the paper is organized as follows. Section 2 reviews recent calibrations of

the LRSD. Sections 3 and 4 introduce estimators of the LRSD and study their performance

in the long-run risks calibration and section 5 estimates the LRSD empirically. Finally,

section 6 discusses implications of the estimates of the LRSD for risk premia and the effects

of stochastic volatility, and section 7 concludes.

3Bansal and Yaron (2004) do not report the Hansen—Jagannathan bound, which is the focus of this paper.
Rather, they report an equity premium in their model. When they include stochastic volatility, the equity
premium rises substantially. They obtain that result because the addition of stochastic volatility increases
the correlation between market returns and the pricing kernel. Specifically, there are three shocks in the
model —short-term consumption growth, persistent consumption growth, and volatility. Dividends are only
driven by the persistent component and volatility. When the volatility shock is non-zero, then, the volatility
of equity returns rises and their correlation with the SDF rises. But the overall variance of the SDF, and
hence the maximal Sharpe ratio, is only changed by roughly 10 percent.
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2 Recent calibrations

The calibrations of consumption processes in the literature can be divided into three cate-

gories. At the low end are the calibrations based on the annual standard deviation of post-war

consumption growth. These papers generally assume that consumption or technology fol-

lows a random walk and that the annual standard deviation of the permanent innovations

is roughly 2 percent.4 In a middle range is a set of papers that also treat consumption as

following a random walk but that are calibrated based on longer time series. Mehra and

Prescott (1985), for example, calibrate a two-state Markov chain for consumption to match

the empirical annual variance and autocorrelation of US consumption growth since the 19th

century. At 3.16, their long-run standard deviation is higher by half than the values used in

papers calibrated to match post-war data.

Finally, Table 1 lists a number of papers studying long-run risks, both in production and

endowment economies. With a standard deviation of 5.54, Bansal, Kiku, and Yaron (BKY;

2012) are on the lower end, while Bansal and Yaron (BY; 2004) choose a value of 6.28, and

Kaltenbrunner and Lochstoer (KL; 2010) are at the upper end with a standard deviation of

8.22.5 The highest calibration in Table 1, at 9.02, is from Croce and Colacito (2011), who

calibrate a long-run risks model to match the behavior of interest rates. Their calibration is

larger than the smallest in Table 1 (Campbell and Cochrane, 1999), by a factor of 6. Under

the approximation for Epstein—Zin preferences with an infinite EIS discussed above, this

difference would also induce a difference in the Hansen—Jagannathan bound of a factor of

6, holding risk aversion constant. So these calibrations have substantial differences in their

implications for the size of risk premia.

There is a large literature that estimates consumption dynamics using both parametric

and non-parametric methods.6 The benchmark results I obtain using the robust estimators

4See, recently, Tallarini (2000), Barro (2006), and Gourio (2012)
5Kaltenbrunner and Lochstoer (2010) study a range of different calibrations, but the one with an LRSD

of 8.22 seems to fit the data best.
6See, e.g., Harvey (1985); Clark (1987); Poterba and Summers (1988); Lo and MacKinlay (1988);

Cochrane (1988); Cochrane and Sbordone (1988); Cochrane (1994); and Morley (2007).
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are on the upper end of the range of past results. That finding is consistent with the simu-

lation evidence below: if there is a persistent component to consumption growth, standard

estimators will be biased downwards.

3 Spectral density estimators

Because there is no agreement on the true specification for the consumption growth process,

this paper looks for a non-parametric estimator that is valid for a wide variety of possible

driving processes for consumption growth. Non-parametric methods estimate the LRSD

while placing minimal restrictions on the high-frequency characteristics of the data. The

estimator I propose is valid as long as the consumption process has a full set of autoco-

variances and a finite spectral density with two derivatives (finding the optimal bandwidth

requires four derivatives). The method is, in theory, robust to time aggregation (Working,

1960; Campbell and Mankiw, 1989), stochastic volatility (as in the long-run risks literature),

and non-normality (e.g. disasters; Barro, 2006).

If consumption growth is uncorrelated over time, then estimating its long-run variance

is simple, since the long-run variance is the same as the unconditional variance. However, if

consumption growth has a persistent component, then estimation of the long-run variance

is more diffi cult. A persistent trend in consumption growth induces a peak in its spectral

density around frequency zero. In the presence of peaks, standard non-parametric estimators

tend to be biased downwards. Not only does that bias make point estimates unreliable, but

it can also cause confidence intervals to fail to include the true value of the long-run variance.

Given that a key hypothesis in the consumption-based asset pricing literature is that there

might be a persistent component in consumption growth, it is important that the estimator

I use here be robust to the possibility of a persistent component. I therefore focus especially

on the issue of bias.
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3.1 Estimation

Suppose for the moment that consumption growth follows a moving average process with

potentially infinite order

∆ct = µ+ b (L) εt (3)

where ∆ct is log consumption growth, µ is its mean, b (L) =
∑∞

j=0 bjL
j is a power series in

the lag operator L, and εt is a martingale difference sequence with an unconditional standard

deviation of 1. The change in the expectation of the long-run level of consumption on date

t is then b (1) εt, with standard deviation b (1). We can define the spectral density as

f (κ) =
∞∑

j=−∞
γj cos (κj) (4)

where γj ≡ cov (∆ct,∆ct−j) (5)

The spectral density at frequency zero is ω2 ≡ f (0) =
∑∞

j=−∞ γj. Furthermore, note that

∞∑
j=−∞

γj =
∞∑

j=−∞

∞∑
k=0

bkbk−j = b (1)2 (6)

and std

(
∆Et+1

∞∑
j=0

∆ct+1+j

)
= b (1) = f (0)1/2 (7)

which shows that the LRSD that appears in Epstein—Zin preferences, std
(

∆Et+1

∑∞
j=0 ∆ct+1+j

)
,

is equal to f (0)1/2. This result is easily extended to a setting where consumption growth is

driven by multiple shocks.7

I consider non-parametric estimators of f (0) based on kernel smoothers in the frequency

domain. Given a sample of consumption growth of length T , {∆c0,∆c1, ...,∆cT−1}, the
7Suppose ∆ct = µ + B (L) εt, where εt is a j × 1 vector and B (L) =

∑∞
k=0BkL

k, where Bk is a 1 × j
vector. The calculation of the covariances and LRSD then yield the same result that the LRSD is equal to
f (0)

1/2.
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periodogram is the square of the finite Fourier transform of the data,

IT (λ) ≡ T−1

∣∣∣∣∣
T−1∑
t=0

exp (−iλt) ∆ct

∣∣∣∣∣
2

(8)

for −∞ < λ < ∞. The periodogram can be thought of as the sample spectrum. Non-

parametric estimates of f (0) smooth observations of the periodogram for λ near zero.

The derivation of the estimator follows Brillinger (1981) closely. I consider estimates of

the form,

fT (0) ≡ 2π

T

T−1∑
s=1

WT

(
2πs

T

)
IT

(
2πs

T

)
(9)

where −∞ < WT (λ) <∞ is a weighting function. The standard method to obtain asymp-

totic results for kernel smoothers is to assume that as T grows, the mass of WT becomes

concentrated in a smaller region around zero so that fT (0) eventually only depends on the

behavior of f (λ) local to 0. Specifically,

WT (λ) ≡
∞∑

j=−∞
B−1
T W

(
B−1
T (λ+ 2πj)

)
(10)

where BT determines the bandwidth for a sample size T and will shrink asymptotically. The

summation over j ensures that WT (λ) has period 2π. Following Brillinger (1981), I make

the following assumptions about the fixed kernel function W (λ),

Assumption 1 W (λ) is real-valued, even, of bounded variation, −∞ < W (λ) <∞,

∫ ∞
−∞

W (λ) dλ = 1 (11)∫ ∞
−∞
|W (λ)| dλ < ∞ (12)

W (λ) = 0 for |λ| > 2π (13)∫ ∞
−∞
|λ|P |W (λ)| dλ < ∞ for P ≤ 4 (14)

fT (0) is a weighted average of the values of the periodogram between frequencies −2πBT
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and 2πBT , so BT determines the bandwidth of the estimator. As BT shrinks, the estimate

of fT (0) is driven by values of the periodogram closer to frequency zero.

Since fT (0) is a linear combination of values of the periodogram, and since the peri-

odogram is non-negative, a suffi cient condition for the estimate of f (0) to be non-negative

is that the kernel, W (λ), is non-negative. That condition has been imposed in most of the

leading long-run variance estimators in the past (e.g. the Newey—West (1987) estimator and

the quadratic spectral estimator analyzed by Priestley (1981) and Andrews (1991)).

To derive the estimator, I use the following from Brillinger (1981)

Assumption 2 ∆ct is real-valued with mean µ, covariances γj ≡ cov (∆ct,∆ct−j) for j =

0,±1, ... (i.e. consumption growth is second-order stationary), and
∑∞

j=−∞ |u|
∣∣γj∣∣ ≤ ∞

Assumption 3 Denote the cumulants of ∆ct as κj (t1, t2, ...tj) = cum
(
∆ct1 ,∆ct2 , ...,∆ctj

)
.

For all k = 2, 3, ...

∞∑
v1,v2,...,vk−1=−∞

(1 + |vj|) |κk (v1, ..., vk−1, vk)| <∞ (15)

for j = 1, ..., k − 1.

Second, I require that the spectral density have at least four derivatives

Assumption 4 f (0) has continuous bounded derivatives of order ≤ 4

The assumption about the cumulants is needed when finding the variance and asymptotic

distribution of the estimator. Andrews (1991) discusses ways that this assumption may be

weakened. In Gaussian models, it will be satisfied if the other assumptions about differen-

tiability are satisfied. However, assumption 3 does potentially rule out models in which the

higher moments of consumption growth vary over time and are suffi ciently autocorrelated.

Assumption 4 is most likely to be restrictive in the finance literature. The assumption that

the spectrum has multiple derivatives at frequency zero rules out long-memory in consump-

tion growth. Simulations with long memory are examined below.
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Taking a Taylor expansion of the expression in theorem 5.6.1 from Brillinger (1981) (see

theorem 7.4.2 in Brillinger (1981); for details see, for example, Wand and Jones (1994),

Sections 2.4.2 and 2.5), the following result is obtained:

Proposition 5 Under assumptions 1, 2, and 4, and if BT → 0 as T →∞

EfT (λ) = f (λ) +
B2
T

2

(∫ ∞
−∞

ω2W (ω) dω

)
d2f (λ)

dλ2 + o
(
B2
T

)
+O

(
B−1
T T−1

)
(16)

where O (βT ) and o (βT ) are Landau notation such that αT = O (βT ) indicates that |αT/βT |

is bounded for suffi ciently large T , and αT = o (βT ) indicates that αT/βT → 0. Furthermore,

if B3
TT →∞ as T →∞,

lim
T→∞

B−2
T (EfT (λ)− f (λ)) =

1

2

(∫ ∞
−∞

ω2W (ω) dω

)
d2f (λ)

dλ2 (17)

Proposition 6 (Brillinger (1981) theorem 5.6.2 and corollary 5.6.2) Under assumptions 1,

2, 3, and if BTT →∞ as T →∞,

lim
T→∞

BTTvar (fT (0)) = 4πf (0)2

∫ ∞
−∞

W (β)2 dβ (18)

Propositions 5 and 6 are standard limiting results for kernel estimators and are used

extensively in the literature. Intuitively, the bias depends on the curvature of the spectrum,

while the variance depends on how concentrated the weight of the kernel is. When the

curvature of the spectrum is higher, kernel estimators will tend to be less accurate, while a

kernel that puts more weight on a small number of periodogram ordinates will tend to be

more variable.

Using results of the same form as the two propositions here, Priestley (1962), Epanech-

nikov (1969), and Andrews (1991) show that the quadratic spectral kernel has the minimum

mean-squared error among non-negative estimators. When the long-run variance is being

estimated for the purpose of using in the denominator of a test statistic, it may be natural
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to use a non-negative estimator. However, we are concerned here with simply estimating

its value for its own interest. It is thus worthwhile to try to reduce the bias. As is well

known in the literature on nonparametric kernel density estimation, for smoother spectral

densities, picking a higher order kernel can reduce the bias while not changing the order of

the variance, thus reducing the mean squared error.

I therefore look for a kernel that minimizes the variance of the spectral density estimator

conditional on setting the leading term of the bias to zero. This can be achieved only if the

restriction onW (·) being nonnegative is removed. The primary concern in the consumption-

based asset pricing literature is that consumption growth might have a highly persistent

component, which would induce a peak in the spectral density at frequency zero, and hence

f ′′ (0) < 0. The bias term is thus a serious potential source of estimation error, so a good

estimator in this setting should try to reduce its order.

The asymptotic variance of the estimator is proportional to
∫∞
−∞W (ω)2 dω. It is straight-

forward, through direct minimization of
∫∞
−∞W (ω)2 dω, to obtain the following result,

Proposition 7 Given the assumptions in propositions 5 and 6, the bandlimited kernel W

satisfying assumption 1 that minimizes the asymptotic variance, limT→∞BTTvar (fT (0)),

holding
∫
ω2W (ω) dω = 0, is

WRQS (ω) =


1

2π

(
9
8
− 15

8
(ω/2π)2) if |ω| < 2π

0 otherwise
(19)

WRQS is the minimum-variance fourth-order kernel obtained by Gasser, Muller, andMam-

mitzsch (1985). Note that the three propositions thus far rely only on a second-order Taylor

approximation to the spectrum. So the derivation of the RQS kernel here requires only the

assumption that the spectrum has two derivatives.

Priestley (1981) and Andrews (1991) find that the quadratic spectral kernel, which takes
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the form

WQS (ω) =


1

2π
3
4

(
1− (ω/2π)2) if |ω| < 2π

0 otherwise
(20)

has the lowest asymptotic mean-squared error among non-negative kernels. WRQS, which I

refer to as the unbiased quadratic spectral (RQS) kernel, is also an inverted parabola, but

it is no longer non-negative. The fact that it is negative in some regions is what allows it to

eliminate the leading term of the asymptotic bias.

The assumptions required to derive the RQS kernel are relatively weak in the context

of macroeconomics and finance. In particular, consumption growth can have very general

forms of heteroskedasticity or time variation in higher moments and there is no assumption

of normality. The part of the derivation most likely to come into conflict with the data is

the idea that the behavior of the spectrum around frequency zero is well approximated by a

Taylor approximation.

WRQS is optimal in the sense that it minimizes the asymptotic variance in equation

(18) while setting the leading term of the bias to zero. The idea to use a kernel that is

potentially negative in order to reduce bias is certainly not novel to this paper —as noted,

the exact kernel was derived by Gasser, Muller, and Mammitzsch (1985). Andrews (1991)

examines kernels with negative weight at certain frequencies, and Politis and Romano (1995)

give an extensive analysis. However, in neither of the latter cases is a minimum-variance

unbiased kernel derived, while Gasser, Muller, and Mammitzsch (1985) do not examine the

performance of such kernels in simulations or empirical analyses.

Figure 1 plots the weights for WRQS,T for a bandwidth that isolates only cycles that

last longer than 8 years (BT = 2π/32 in quarterly data; a standard definition of the lower

limit of business cycle frequencies that is suggested as a limit in the context of long-run

variance estimation in Müller (2007); see also Christiano and Fitzgerald (2003)) along with

the weights for the Newey—West and QS kernels. WRQS,T looks similar to the kernel for the

Newey—West estimator at low frequencies, but it becomes negative at higher frequencies.
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Intuitively, if the spectrum is upward sloping, then WRQS,T is able to extrapolate so that

its estimate fT (0) can be above any of the values of IT (λ) that we measure. Compared to

the QS kernel with the same bandwidth, we can see that the RQS kernel is relatively more

peaked, and also is negative at higher frequencies. The fact that it is more peaked means

that we should expect it to have a higher variance for a given bandwidth.

3.2 Distribution theory

Finally, we need a distribution of the estimate using WRQS so that we can construct con-

fidence intervals. In any particular sample, fT,RQS (0) is a weighted average of the peri-

odogram. The number of periodogram ordinates used for fT (0) depends on BTT (since

the periodogram ordinates are spaced in proportion to 1/T and the frequency range used is

limited by BT ). In the derivation of the RQS kernel (and for asymptotic expressions for the

bias more generally), we must assume that BTT → ∞, so that the number of periodogram

ordinates used is infinite. In realistic samples, though, that number will often be small. For

example, in the main results below, the estimator uses only eight points on the periodogram.

We would thus expect that any approximation assuming that BTT →∞ will do a poor job

of describing the asymptotic distribution.

To derive the distribution theory, rather than approximating fT (0) as though it uses an

infinite number of periodogram ordinates, I approximate it as though it uses a fixed number,

which is equivalent to assuming that BTT converges to a constant —that is, the bandwidth

shrinks in proportion to the sample size.8 In the end, then, the sense in which the RQS

kernel is optimal requires relatively more powerful asymptotics under which the number of

periodogram ordinates used in the estimator is infinite, while the distribution theory uses a

weaker assumption that is likely more realistic in small samples. Both of these asymptotic

assumptions are standard in the literature and neither is novel to this paper.

Under the assumption that BT = bT−1 for an integer b, plugging the formula for WT as
8The assumption that BTT converges to a constant is similar to the fixed-b asymptotics used recently by

Kiefer and Vogelsang (2005) and Phillips, Sun, and Jin (2008), among others.
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a function of W into the formula for fT (0) and using the periodicity and symmetry of the

periodogram, we have

fT (0) =
2π

T

T−1∑
s=1

WT

(
2πs

T

)
IT

(
2πs

T

)
(21)

=
(
2b−1

)
(2π)

b∑
s=1

W
(
b−12πs

)
IT

(
2πs

T

)
(22)

The distribution of such an estimate then satisfies the following limit

Proposition 8 (Brillinger (1981) theorem 5.5.3) Suppose assumptions 2 and 3 hold. For a

fixed set of weights W (b−12πs), s ∈ {0, 1, ..., b}, fT (0) converges in distribution to

fT (0)⇒ f (0)

∑b
s=1W (b−12πs)χ2

2 (s) /2∑b
s=1W (b−12πs)

(23)

where ⇒ denotes convergence in distribution and χ2
2 (s) is a set of independent χ2

2 variates.
9

The distribution (23) follows from the standard result that the periodogram ordinates

are asymptotically independent χ2
2/2 random variables. This result does not require strong

assumptions that the number of periodogram ordinates used for the kernel grows asymp-

totically, which is how a Gaussian distribution for the estimate of the spectrum is usually

derived. Because this distribution takes seriously the fact that the number of periodogram

ordinates used in the estimation is small we may expect it to be more accurate than a normal

distribution.

3.3 Bandwidth selection

There are two common approaches to determining the bandwidth for an estimate of the

LRSD. The first is to use economic intuition to restrict the set of frequencies used in the
9The theorem in Brillinger (1981) has a small typo —the denominator should not be squared. Referring

to Brillinger’s appendix, the result is derived using the continuous mapping theorem applied to the result
that the periodogram ordinates are asymptotically independent χ22/2 random variables.
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estimation. For example, Müller (2007) proposes in setting with macroeconomics to use

information on the spectrum at frequencies lower than the business cycle.10 The second

method is to find an optimal bandwidth that minimizes the asymptotic mean squared error

(AMSE)

Following Andrews (1991), we can obtain the AMSE of the estimator under specific

assumptions about the shrinkage rate of the bandwidth. Since the leading term of the bias

has been set to zero, by taking a Taylor expansion of a higher order than was needed for

Proposition 5, the following result is obtained.

Proposition 9 Under assumptions 1, 2, and 4, and if BT → 0 as T →∞

EfT (λ) = f (λ) +
B2
T

2

(∫ ∞
−∞

ω2W (ω) dω

)
d2f (λ)

dλ2

+
B4
T

24

(∫ ∞
−∞

ω4W (ω) dω

)
d4f (λ)

dλ4 + o
(
B4
T

)
+O

(
B−1
T T−1

)
(24)

Furthermore, if
∫∞
∞ ω2W (ω) dω = 0 and B5

TT →∞,

lim
T→∞

B−4
T (EfT (λ)− f (λ)) =

1

24

(∫ ∞
−∞

ω4W (ω) dω

)
d4f (λ)

dλ4 (25)

Using proposition (6) for the variance, we obtain

Proposition 10 Assume BT = η−1/9T−1/9 for some positive constant η. Then

lim
T→∞

BTTE
[
(fT,RQS (0)− f (0))2] = lim

T→∞
BTT

(
var (fT,RQS (0)) + E [fT,RQS (0)− f (0)]2

)
(26)

= lim
T→∞

(
BTTvar (fT,RQS (0)) + η−1B−8

T E [fT,RQS (0)− f (0)]2
)
(27)

= 4πf (0)2

∫ ∞
−∞

W (β)2 dβ + η−1

(
1

24

(∫ ∞
−∞

ω4W (ω) dω

)
d4f (λ)

dλ4

)2

(28)

10Specifically, "Knowledge about the form of the spectrum... then suggests appropriate values for [the
bandwidth]; for macroeconomic time series, for instance, one might want to pick [a bandwidth] small enough
not to dip into business cycle frequencies."
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which implies

lim
T→∞

T 8/9E
[
(fT,RQS (0)− f (0))2] = η1/94πf (0)2

∫ ∞
−∞

W (β)2 dβ

+η−8/9

(
1

24

∫ ∞
−∞

ω4W (ω) dω

)2(
d4f (λ)

dλ4

)2

(29)

The bandwidth that minimizes the asymptotic mean squared error of fT,RQS is then

obtained by minimizing (29) over η. We obtain

η∗RQS = 2π−1

(
1
24

∫∞
−∞ ω

4W (ω) dω
)2

∫∞
−∞W (β)2 dβ

(
d4f(λ)

dλ4

f (0)

)2

(30)

The unknown factor in this formula is a normalized measure of curvature, d
4f(λ)

dλ4
/f (0).

Newey andWest (1994) propose to estimate the normalized curvature using a kernel smoother.

Following them, I use a flat kernel in the time domain and estimate the normalized curvature

as ̂d4f (λ)

dλ4 /f (0) =
2
∑nγ

j=1 j
4γ̂j

γ̂0 + 2
∑nγ

j=1 γ̂j
(31)

where γ̂j is the jth sample autocovariance of consumption growth and nγ is a first-stage

bandwidth that must be chosen.

The results in the remainder of the paper examine both fixing the bandwidth BT based on

economic knowledge and also using the estimated minimum-AMSE bandwidth,
(
η∗RQST

)−1/9
.

I refer to the estimates using the fixed bandwidth —set to use cycles only lasting 32 quarters or

more —as the RQS estimates and those using the minimum-AMSE bandwidth as RQSmAMSE.

I set nγ = 20 for the benchmark results but also explore other choices for the first-stage

bandwidth.11 Newey and West (1994) discuss the optimal asymptotic growth rate of nγ,

but asymptotic results provide no specific formula for nγ in small samples, so I explore the

11It is not possible to escape having to choose a bandwidth or a fixed model at some point. Newey and West
(1994) suggest, though, that the selection of the bandwidth in the estimation of the normalized curvature
is less consequential for the final estimates of the LRSD than the selection of the bandwidth for estimating
the LRSD itself, so using an arbitrary choice in the first stage may be more justified.
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effects of different choices in simulations.

3.4 Cointegration

Previous work has taken advantage of the implication of balanced growth theory that con-

sumption is cointegrated with other aggregate series like investment and output to help

obtain more powerful estimates of the LRSD (e.g. Cochrane and Sbordone, 1988). For non-

parametric estimates such as those used here, though, adding a series that is cointegrated

with consumption growth does not improve the asymptotic behavior of the estimators.

Specifically, suppose consumption and output are cointegrated, so that their joint spectral

density matrix at frequency zero has rank 1. Intuitively, since the non-parametric estimators

use only the very low frequency features of the data, and consumption and output are

assumed to be perfectly correlated at the lowest frequencies, adding output to the estimation

adds no new information.12 When Cochrane and Sbordone (1988) find that cointegration

improves estimates, it is because they use a parametric method that also requires estimating

the high-frequency features of the data. Because consumption and output growth may

differ at higher frequencies, using both can improve power. But since here we focus on non-

parametric methods that ignore high frequencies, output growth is asymptotically redundant

to consumption growth.

4 Performance of estimators in simulations

To examine the bias, variance, and accuracy of the confidence intervals for various estima-

tors, I now simulate a broad range of potential data generating processes for consumption

growth. I consider five estimators: the RQS and RQSmAMSE estimators, the standard QS

12Brillinger (1969) derives the asymptotic distribution of the multivariate periodogram and shows that
it follows a Wishart distribution that is independent across frequencies with scale matrix equal to fXX (λ)
(where fXX is the multivariate spectral density matrix). Since fXX (0) has rank 1 when output and con-
sumption growth are cointegrated, the periodogram ordinates local to zero are perfectly correlated. A similar
result holds under Mueller’s (2007) asymptotics.
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kernel, the Newey—West estimator, and Müller’s (2007) estimator based on a Karhunen—

Loeve transformation of the data (with a modification for the fact that in this paper we do

not assume that the true mean of the time series is known ex ante).13 ,14 For the Newey—West

and QS kernels, I used the fixed-b asymptotics from Kiefer and Vogelsang (2005).

I simulate four different specifications for consumption growth — Bansal and Yaron’s

(2004) long-run risks model, an AR(1), a model with long memory, a model that combines

both persistence and anti-persistence in consumption growth, and a model with jumps in

consumption growth. Overall, I find that the RQS estimator outperforms the Newey—West,

QS, and Müller estimators in terms of both bias/variance trade-offs and confidence interval

coverage. Furthermore, the performance of the RQS and RQSmAMSE estimators is highly

similar.

4.1 Bansal and Yaron’s (2004) long-run risk model

4.1.1 Simulation strategy

Bansal and Yaron’s (2004) long-run risk model for consumption growth is

∆ct+1 = µ+ xt + σtηt+1 (32)

xt+1 = ρxt + ϕeσtet+1 (33)

σ2
t+1 = σ2 + ν1

(
σ2
t − σ2

)
+
σw
σ2
wt+1 (34)

et+1, ηt+1, wt+1 ∼ i.i.d.N (0, 1) (35)

13ωMueller,j is defined as ωMueller,j ≡ j−1
∑j

k=1 χ
2
k, where χ

2
j ≡ (πj)

2
(
T−1

∑T
t=1 ut

√
2 sin (jπt/T )

)2
and

ut = T−1/2
∑t

j=1 ∆cj . The formula for χ2j here differs slightly from Müller (2007) because that paper
assumes the data are not demeaned. When the data are demeaned, the trigonometric transforms must be
the eigenfunctions for a Brownian bridge (Phillips (1998)).
14The estimator in Müller (2007) is positive-semidefinite, so it can be expected to inherit the bias that

the other positive-semidefinite estimators have. And in fact, his reported simulation results show that for
persistent time series, his estimator is biased downward. On the other hand, Müller (2007) shows that
the KLT-based estimator is robust to contaminations in models that the usual Newey—West estimator is
not. His estimator is designed to be robust and optimize a bias/variance trade-off in the presence of those
contaminations in the class of positive-semidefinite estimators.
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In addition to generating long-run risk, the model is also heteroskedastic (making consump-

tion growth unconditionally leptokurtic), which adds another layer of diffi culty for the esti-

mators.

I consider a range of calibrations with different ratios of the LRSD to the unconditional

standard deviation of consumption growth, with the ratio LRSD/std (∆ct) ranging from 1.05

to 2.3.15 In the original calibration the ratio is 2.26, while a ratio of 1 corresponds to white-

noise consumption growth, in which case we would expect all estimators to perform well. I

use a sample of 67 years of data, as in the post-war empirical sample below, because that is

the shortest and thus most diffi cult sample size for the estimators.16 The simulated monthly

series for consumption growth is aggregated into quarterly observations for the estimation.

I simulate 20,000 samples for each value of the LRSD, and calculate each estimator along

with its confidence interval in each sample.

4.1.2 Results

Figures 2 and 3 plot the results from the simulations. Figure 2 plots the bias of the estimators

against the variance as the bandwidth of each estimator is varied (there is no bias/variance

trade-off for RQSmAMSE since its bandwidth is estimated rather than chosen). The four

panels of the figure correspond to different ratios of the LRSD to the unconditional standard

deviation (i.e. to different degrees of peakedness in the spectrum). As we would expect,

the estimators are all biased downwards, and the bias is relatively larger when the LRSD is

higher. However, in all four cases, the bias of the RQS estimator is smaller for a given level of

15Given values for LRSD, std (∆ct), and corr (∆ct,∆ct−1), the parameters ρ, ϕe, and σ
2 are identified.

To study the effects of a change in the LRSD, I hold std (∆ct) and corr (∆ct,∆ct−1) fixed at their original
values from Bansal and Yaron (2004) and solve for the implied values of ρ, ϕe, and σ2 given a value
of the LRSD. In Bansal and Yaron’s calibration, std (∆ct) = 0.0080 and corr (∆ct,∆ct−1) = 0.043. The
calibration is in monthly terms, so std (∆ct) corresponds to an annualized standard deviation of 2.76 percent.
Note that in the simulations we retain the original specification for stochastic volatility, and its persistence
and volatility (v1 and σw) are held fixed at their original values. The original calibration is: ρ = 0.979;
ϕe = 0.044; σ2 = 0.00782; ν1 = 0.987; σw = 0.00000232.
16I also ran similar simulations using sample sizes corresponding to the longer periods available in annual

data. The results are not reported here, but they yield qualitatively similar conclusions. Quantitatively,
with the longer samples every estimator has better confidence interval coverage and less bias.
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variance. Moreover, the reductions are economically large. At a given bias, the RQS kernel

reduces the variance by approximately 20 percent on average across the four simulations.

The RQS kernel does not simply represent a movement along the same bias-variance

frontier that is obtained by the QS kernel. Rather, because it dispenses with the non-

negativity constraint it is a shift of the frontier. This result is true both in the simulations

and also asymptotically, due to the construction of the RQS kernel to have minimum variance

for a given bias.

I next study in more detail the specific performance of the estimator that will be used

in the empirical analysis below. Following Müller (2007) and Christiano and Fitzgerald

(2003), I limit the bandwidth of the RQS estimator to only cycles lasting longer than 32

quarters, which is a standard definition of the end of business-cycle fluctuations. The other

estimators are implemented with bandwidths that generate the same variance when the ratio

of the LRSD to the unconditional standard deviation is 2.3, so as to make the estimators

comparable. This corresponds to using 32 lags for the QS kernel and seven terms in Müller’s

(2007) estimator.

Figure 3 plots two measures of the accuracy of the four estimators: the coverage of their

confidence intervals and their bias. In the two panels of the figure, the LRSD ranges from

1.05 to 2.3 times the unconditional standard deviation. The top panel plots the coverage of

each estimator’s 95-percent confidence interval. Coverage is the key measure of confidence

interval accuracy since it tells us whether the true value of the LRSD is actually contained

in the confidence interval as often as we expect. Here and below I use a one-sided confidence

interval (on the upper side) since we are primarily concerned with finding an upper bound

for the LRSD rather than a lower bound, but the results in the simulations are not sensitive

to the choice of one-sided versus two-sided tests.

Across the range of LRSD’s, from nearly white noise (where the LRSD is equal to the

unconditional standard deviation) to the original long-run risks calibration, we see that the

coverage of the confidence interval for the RQS and RQSmAMSE estimators is always nearly 95
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percent, whereas it is well below 95 percent for the other estimators. When the LRSD is 2.3

times the unconditional standard deviation, Müller’s estimator has coverage of 84 percent,

while the QS kernel has coverage of 80 percent. While all the estimators perform well in

the white noise case, when there is a substantial trend component in consumption growth,

the confidence intervals quickly become inaccurate for all the estimators except the RQS

estimator. The success of the RQS estimator in producing an accurate confidence interval is

the strongest reason to use it in estimation —whatever the merits of the point estimate, we

ultimately care about what range of estimates is plausible, and it is the confidence interval

that tells us that.

The bottom panel of figure 3 plots the bias of the estimators. As would be expected

given that the bandwidths for the estimators are set so that they all have the same variance,

the bias of the RQS estimator is the smallest of all. The RQS estimator has a bias that

is 25 percent smaller (in relative terms) on average than the other three estimators, so the

reduction is economically significant. RQSmAMSE has bias similar to the QS and Müller

estimators.

The minimum-AMSE RQS estimator used in figure 3 uses 20 lags of consumption growth

to estimate the optimal bandwidth. To examine the robustness of that choice, figure A1

replicates figure 3 using different lag choices. For nγ ≥ 20, the bias of the RQS estimator is

less than or equal to that of Müller’s estimator. The confidence interval coverage across all the

values of nγ is almost always closer to 95 percent than what is obtained by Müller’s estimator.

So while the best results are obtained with nγ = 20, the findings are not particularly sensitive

to that choice.

4.2 AR(1) model

I next consider behavior in a simple AR(1) model, which is often taken as a basic benchmark.

These simulations also let me directly compare my results to those of Müller (2007), who
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also simulates AR(1) models. In this model, consumption growth follows

∆ct = ρ∆ct−1 + εt (36)

εt ∼ N
(
0, σ2

ε

)
(37)

where the variance σ2
ε is irrelevant for the simulation results since all the variances and

autocovariances simply scale with σ2
ε.

Figure A2 plots the spectrum of consumption growth in an AR(1) with an autocorrelation

of 0.9 compared to the baseline long-run risk model (Bansal and Yaron’s (2004) calibration).

We see that the AR(1) spectrum is less peaked around frequency zero, suggesting that it

should be easier to estimate the LRSD in the AR(1) model.

Figure A3 reports bias/variance trade-offs as in figure 2 for four different degrees of

autocorrelation. Again, the RQS estimator gives the smallest bias for a given level of variance

across all the estimators and degrees of autocorrelation, though the benefits of the RQS

estimator now seem smaller than we observed for the long-run risk model. Figure A4 shows

that the RQS and RQSmAMSE estimators deliver a confidence intervals with coverage far

closer to the nominal 95 percent level than the other estimators and with less bias. Table

A1 also replicates simulation results for AR(1) and MA(1) models from Müller (2007).

4.3 Long memory

The two classes of models examined so far both satisfy the assumptions justifying the RQS

estimator. I now examine a situation where consumption growth has a highly persistent com-

ponent and the assumptions are violated. In particular, I assume that the autocovariances

of consumption growth take the form

cov (∆ct,∆ct−j) = σ2
∆c (1 + |j|)−(1+φ) (38)
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for a parameter 0 < φ < 1. Consumption growth in this model displays long memory in the

sense that the autocovariances decline more slowly than geometrically (Bailie (1996)).

The spectral density at frequency zero for this model is finite as long as φ > 0. The

second derivative of the spectrum is proportional to

f ′′ (0) ∝
∞∑
j=1

j2 (1 + j)−1−φ (39)

which diverges when φ < 2. The model of consumption growth (38) thus has a well defined

long-run standard deviation, but it fails to satisfy assumption 4 because the spectrum does

not have a second or third derivative. Figure A2 plots the spectrum for (38) when φ = 0.4.

The spectrum for the long memory model is sharply peaked at frequency zero, and it is clear

that the second derivative does not exist. While the model (38) violates the assumptions

justifying the RQS estimator, though, it has broadly similar properties to the long-run risk

and AR(1) models, in the sense that the spectrum rises as the frequency approaches zero.

Since the RQS kernel is meant to accommodate a spectrum that increases as the frequency

falls, we may expect it to still perform well in this setting.

As with the long-run risk model, I vary the calibrations of the long-memory model based

on the ratio of the LRSD to the unconditional standard deviation, which is governed by the

parameter φ. I set σ∆c = 0.0138.

Figures A5 and A6 report results for simulations of various parameterizations of the long

memory model. In all four cases examined in figure A5, the RQS estimator again displays

a superior bias/variance trade off to the other estimators. Figure A6 shows that the 95

percent confidence interval for the RQS and RQSmAMSE estimators have superior coverage

to the others. So even when the technical assumptions used to derive the RQS estimator are

violated, we still find that it works well in a case where consumption growth has a highly

persistent component.
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4.4 A notched spectrum

The results of the three sets of simulations so far suggest that the RQS estimator performs

well when the spectrum is peaked at frequency zero, even if the differentiability requirements

are violated. This section shows a scenario in which the RQS estimator underperforms the

others.

Suppose consumption growth follows the process

∆ct =
120∑
j=0

bjεt−j (40)

εt ∼ N (0, 1) (41)

In the simulations so far, the coeffi cients bj have all been positive, inducing a persistent

component in consumption growth. Here I consider a scenario where they are positive

initially but then turn negative. Specifically,

bj =


σ∆c if j = 0

σ∆c
R−1
20

if 1 ≤ j ≤ 20

σ∆c
R−1
100

if 21 ≤ j ≤ 120

(42)

The LRSD is thus σ∆c, but the first 20 lag coeffi cients are all significantly positive. Fig-

ure A2 plots the spectrum for this model, and we see that while it rises at relatively low

frequencies, it then falls again as the frequency approaches zero. A spectral estimator that

averages the periodogram ordinates any significant distance from frequency zero should thus

be expected to encounter problems. Specifically, in the simulated samples of 65 years of data,

the first periodogram ordinate corresponds to a cycle length of 65 years, and the second to

33 years. At those two points, the notched spectrum in figure A2 is above 0.8, whereas its

value at frequency zero is only 0.31, suggesting that kernel estimates will be biased upward

enormously.

Figures A7 and A8 confirm that intuition. The estimators are all substantially positively
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biased —by anywhere from 20 to 130 percent —and their confidence intervals have very poor

coverage —often well below 50 percent. Looking at the bias/variance trade-offs, unlike the

previous simulations, there is no single estimator that outperforms all the others. For larger

bandwidths, the RQS estimator has a smaller bias for a given level of variance than the

other estimators. But when the bandwidth shrinks, raising the variance, the bias of the RQS

estimator rises higher than those of the other estimators. In the end, then, none of the four

estimators performs particularly well in these simulations, all of them being biased upward

substantially. The RQS estimator performs worst in terms of confidence interval coverage,

and in terms of its bias/variance trade-off delivers mixed results.17

So the situation when we should expect the RQS estimator to perform worst seems

to be when consumption displays initial persistence over a period of years, but then anti-

persistence in the longer term, especially if the spectrum decreases at frequencies below the

smallest available periodogram ordinate.

4.5 Excess kurtosis

The simulations above all focus on the low-frequency behavior of consumption growth, but

they leave the distribution of consumption growth conditionally normal (though in the long-

run risk model consumption growth is unconditionally leptokurtic). The last set of simula-

tions that I consider examines a scenario where the persistent component of consumption

growth can display large jumps.

I assume consumption growth follows

∆ct = xt + εt (43)

εt ∼ N
(
0, σ2

ε

)
(44)

and where xt follows a Markov switching process, taking on values ±x̄. I assume that the
17Since all the estimators are biased up in this case, I examine two-sided instead of one-sided confidence

intervals (with one-sided intervals, all estimators have 100 percent coverage).
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process is symmetrical with a probability 1−ρx of staying in the same state as in the previous

period and probability ρx of transitioning to the other state. When ρx = 0.03, the conditional

kurtosis of xt is 32, so this specification allows us to test the performance of the estimators in

the presence of extreme excess kurtosis in the persistent component of consumption growth.

I simulate the model at a monthly frequency, letting ρx vary between 0.5 and 0.0125. σε is

set to 0.0078 and x̄ = 0.0017.

Figures A9 and A10 report results for simulations of the Markov switching model. As

in the other specifications, the RQS estimator again displays less bias for a given level of

variance. Figure A10 shows that its confidence intervals are now somewhat conservative,

having coverage that is generally above the nominal level. The RQS estimator will thus tend

to under-reject excessively high calibrations of the LRSD here. Otherwise, though, the basic

conclusions about the performance of the RQS estimator compared to previous proposals

are unchanged from the four other simulations considered.

Overall, then, this section shows that the RQS estimator displays a superior bias/variance

trade-off and confidence intervals that have coverage rates closer to their nominal levels

compared to the QS kernel, the Newey—West estimator, and Müller’s (2007) estimator in all

examined cases except when the impulse response function of consumption growth displays

initial persistence which is then cancelled out by antipersistence over the very long run. The

RQS kernel can be expected to work better than the other available estimators in the long-

run risk model, an AR(1), with long memory, and with excess kurtosis in the consumption

trend. Moreover, the results using the RQS kernel are essentially unchanged regardless of

whether the bandwidth is chosen based on economic knowledge or on a minimum-AMSE

criterion.
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5 Empirical estimates

This section takes the RQS kernel estimator and applies it to observed consumption growth

in the United States to obtain estimates and confidence intervals for the LRSD.

5.1 Data

I study three data samples. The first is the standard post-war quarterly non-durable goods

and services per capita measure of consumption growth. The quarterly data covers 1947q1—

2015q1. The second sample is the longest annual sample available from the BEA, which runs

from 1929 to 2014. Finally, to form the longest possible sample, I take data on aggregate

per capita consumption (durables, non-durables, and services) from Barro and Ursua (2010).

Their sample is 1834—2009, and I add updated data from the BEA to extend it to 1834—2014.

In results not reported here, I find similar LRSD estimates from the three different series in

the post-war period where they overlap.

5.2 Results

Figure 4 reports the estimates. The plot is divided into three sections for the three data

samples. Each of the squares is a point estimate, while the small vertical lines give one-sided

90- and 95-percent confidence intervals for each estimator. The horizontal lines are placed

for reference at the calibrations used by Bansal and Yaron (BY; 2004), Bansal, Kiku, and

Yaron (BKY; 2012), and Kaltenbrunner and Lochstoer (KL; 2010). As in the simulations, I

set the bandwidth of the RQS kernel estimator so that it only takes into account fluctuations

lasting 8 years or more (i.e. B = 2π/32 in quarterly data and 2π/8 in annual data). In each

sample I also estimate the optimal bandwidth for RQSmAMSE.

In the post-war data, the point estimate for the LRSD with RQS is 2.45 percent per

year, with a 90-percent CI at 3.99 and 95-percent CI at 4.91. These estimates reject both

BY and KL at the 5-percent level and BKY at the 10-percent level. The two longer samples
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yield substantially higher point estimates — 3.50 and 4.05 percent per year for the post-

1929 and the post-1834 data, respectively. In all three samples we reject the KL and BY

calibrations with both the RQS and RQSmAMSE estimates, while BKY is rejected at the 10-

percent level in the post-war sample with RQS and the 5-percent level with RQSmAMSE. The

BKY calibration of the LRSD thus seems to be weakly supported by the data (especially

the long samples), while the other two calibrations are soundly rejected.

In the previous section, we saw that the bias in the estimators rose as the ratio of the

LRSD to the unconditional standard deviation rose. In the post-war sample, that ratio is

2.3; in the 1929—2014 sample it is 1.59; and in the 1834—2014 sample it is 1.07. We should

thus expect the bias in the point estimates to be minimal except possibly in the post-war

sample. If we use the 18-percent correction implied by the simulations for the ratio of 2.3

in the post-war sample, then the point estimate should be revised from 2.45 to 2.89 percent

per year. That said, recall that the confidence interval coverage for the RQS estimator is

essentially correct for all values of the LRSD in Figure 3, so regardless of any bias in the

point estimates, the confidence intervals can be trusted.

In addition to the RQS kernel estimator, I also consider estimates from a number of

standard parametric estimators. These estimators impose much tighter assumptions on

the dynamics of consumption growth, but they are useful for making sure that the RQS

estimator is not an outlier compared to more well known estimators. I therefore estimate

ARMA models on each sample, using the Bayesian information criterion to choose the top

two preferred ARMA models in each data sample. I also estimate an ARMA(1,1) model for

each sample since that is a homoskedastic version of what BY and BKY use.18 The point

estimates and 90- and 95-percent confidence intervals for the various parametric estimators

are all summarized in Figure 4. As with the RQS estimator, the estimates are higher in

the annual data. Not surprisingly, the confidence intervals for the parametric estimators are

18Note that the parametric estimators do not account for time aggregation, which makes them potentially
misspecified. The presence of heteroskedasticity makes them ineffi cient, but still consistent as quasi-maximum
likelihood estimators.

30



much tighter than those for the RQS kernel. Intuitively, the parametric estimators are able

to take advantage of high-frequency variation in consumption growth to identify the low-

frequency dynamics, which helps improve power. That is why the non-parametric estimators

are preferred —they estimate the LRSD without constraining the high frequency dynamics,

which could easily change over time, e.g. due to shifts in monetary and fiscal policy or the

structure of labor markets. That said, other than the tightness of the confidence intervals,

the conclusions from the parametric estimators are not qualitatively different from those

obtained with the RQS estimator.

Finally, figure 4 lets us compare the RQS and RQSmAMSE estimators. The two estimates,

especially for the post-war and Barro—Ursua samples, are rather similar. In the post-war

sample, the estimated optimal bandwidth is wider than the business cycle and includes higher

frequencies, which both reduces the point estimates and narrows the confidence bands. We

obtain similar results in the 1843—2014 sample. In the shorter 1929—2014 sample, we obtain

the opposite result —the optimal bandwidth is narrower than the business cycle. This causes

the confidence intervals to become larger and less uninformative. We thus see that in practice,

when possible, selecting the bandwidth based on economic intuition (as is often done with

the Newey—West estimator, for example) seems to lead to more stable results across samples.

5.3 International data

To help understand whether the experience in the United States has been anomalous, table

2 reports estimates of LRSDs from Barro and Ursua’s (2010) panel of international data

on real consumption growth for 42 countries. For each country, I use data for the longest

continuously available sample. Because the data is often anomalously volatile when countries

initially enter the panel, I eliminate the first ten years of each country’s sample. Both of

these filters are likely to bias estimates of risk downward.

Table 2 reports percentiles of the distribution of estimates of the LRSD across countries

and also the rank of the US in that distribution. In both the full and the post-war sample,
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the US estimate of the LRSD is well below the median, ranking 33rd and 36th out of 42

countries, respectively. The median estimate of the LRSD in the full sample is 5.14 percent.

Consistent with the US experience, though, the distribution of the LRSD shifts substantially

downward in the post-war sample, with the 25th, 50th, and 75th percentiles falling by 0.8

to 1.5 percentage points. So while the US has had an anomalously low LRSD compared to

most of the rest of the world, its post-war decline is similar in direction and magnitude.

5.4 Testing the benchmark calibrations

The analysis so far focuses purely on estimating the LRSD of consumption. The results

therefore depend on the validity of the assumptions underlying the various estimators. If the

only thing we want to do is test the calibrations used in particular models, though, whether

the estimators and their confidence intervals are accurate is largely irrelevant. We can simply

ask how likely we would be to see the estimates we obtained with the various estimators in

the data if we simulated the original calibrations in the long-run risks models.

I consider the performance of simulations of the BY and BKY models in comparison

to two empirical estimates: the RQS kernel and an ARMA(1,1). I choose the ARMA(1,1)

because it is the exact model (though without the stochastic volatility) that BY and BKY

use. I simulate the BY and BKY models (in the forms with stochastic volatility) for samples

equivalent to the three empirical samples —272 quarters, 85 years, and 177 years. The initial

states of the model —expected consumption growth and the conditional variance —are drawn

from their unconditional distributions. I then form each of the estimators in 10,000 samples.

Table 3 summarizes the results of the simulations of the benchmark calibrations. Both

calibrations struggle to match the post-war sample. For the RQS estimator, the BY cali-

bration generates a value as small as we observe in the empirical sample in only 2.6 percent

of the simulations, while in the BKY calibration the simulated RQS LRSD estimate is as

small as the empirical value 13.0 percent of the time. If these calibrations are true, then, the

post-war period was one of extraordinarily low volatility —one that should have occurred
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only once every 2600 years for BY or once every 500 years for BKY.

In the post-1834 sample, the BY calibration matches the data 9.2 percent of the time,

while the BKY calibration does 34.5 percent of the time. We obtain similar results with

the ARMA(1,1) measure of the LRSD and in the post-1929 sample. Table 3 thus suggests

that while the BY calibration is on the edge of being reasonable given the data, the BKY

calibration is much more plausible, especially for the longer samples. While the post-war

period is challenging for these models, Table 3 and Figure 4 show that the LRSD in the

pre-1930 period is well matched by long-run risks models.

6 Implications of stochastic volatility

Some long-run risks models place a special emphasis on stochastic volatility. In section 2

we showed that the RQS kernel estimator is theoretically robust to stochastic volatility.

Moreover, in simulations of Bansal and Yaron’s (2004) calibration with stochastic volatility,

figures 2 and 3 show that the point estimates and confidence intervals for the RQS estimator

are accurate. So for the purposes of estimating the LRSD, standard calibrations of stochastic

volatility have little effect.

An important question, though, is how accurate the approximation in equation (2) re-

mains when consumption growth has stochastic volatility. Shocks to volatility affect the

pricing kernel and hence the Hansen—Jagannathan (HJ) bound and price of risk. So when

volatility varies, can we still use risk aversion multiplied by the LRSD as a good approxima-

tion for the HJ bound?

To answer that question, figure 5 plots the HJ bound in the BY and BKY models, both

with and without stochastic volatility, for varying amounts of long-run risk. I allow the

LRSD to vary between 2.5 and 6.5 percent per year. As in the simulations summarized in

figures 2 and 3, I hold the unconditional standard deviation and autocorrelation (USD and

AC1) identical to their original values in BY and BKY (though note that in Figure 5 the
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x-axis gives the LRSD instead of the ratio of the LRSD to the USD as in figure 3). When we

retain stochastic volatility, σw in equation (34) is set to its original value in BY and BKY

so that the volatility of volatility is held fixed in proportional terms (without stochastic

volatility, σw = 0).

Figure 5 shows that the approximation in equation (2) is accurate across a range of values

of the LRSD in the BY model, and that the inclusion of stochastic volatility does little to

affect the results.

For the BKY model without stochastic volatility, the approximation α × LRSD also

works well. For the BKY model with stochastic volatility, the approximation is less accurate

—the HJ bound is substantially higher than predicted, but the LRSD still describes very

accurately how the HJ bound varies across calibrations.

In BKY, then, knowing only the LRSD is not suffi cient for knowing the price of risk

in the economy. But that statement is true more generally: if there were disaster risk,

or time-varying risk aversion, or any number of other sources of variation in the economy,

the LRSD would also not be a suffi cient statistic for the HJ bound. What figure 5 shows,

though, is that even in the BKY model, where volatility is extremely volatile and persistent

— its half-life is 57 years and its standard deviation is 1.2 times its mean — the LRSD is

useful for understanding how the price of risk varies across calibrations. The extent to which

variation in the level of volatility affects the HJ bound obviously depends on the average level

of volatility. So for a large range of important models in the literature, the LRSD is a key

statistic to match, even if it is not the only important number. Moreover, the majority of the

literature considers homoskedastic Gaussian models, where the LRSD is in fact a suffi cient

statistic.
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7 Conclusion

This paper argues that the long-run standard deviation (LRSD) of consumption growth

is a critical moment in determining the behavior of asset-pricing models. In a limiting

approximation where a household with Epstein—Zin preferences is indifferent to the date on

which consumption occurs (has an infinite EIS and a rate of time preference approaching

zero), the standard deviation of the pricing kernel, which determines the price of risk and

the maximal Sharpe ratio, is simply the product of the coeffi cient of relative risk aversion

and the LRSD of consumption growth.

The LRSD is diffi cult to estimate when consumption growth has a persistent component,

and I show that the confidence intervals from many estimators have poor coverage. However,

the new estimator proposed here displays nearly exactly correct confidence interval coverage

in simulations in addition to a superior bias/variance trade-off compared to other estimators.

I present a range of estimates of the LRSD using the new estimator. In the post-war

samples, a reasonable upper limit for admissible values is 4—5 percent per year and the point

estimate is 2.5 percent. In longer samples, the point estimates rise close to 4 percent per

year with a 95-percent confidence interval rising as high as 6.0 percent in the longest sample.

Figure 4 summarizes the results and gives a guide to future calibrations of models with

Epstein—Zin preferences.
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Figure 2. Bias/variance tradeoffs for different LRSDs

Notes: Each panel plots the bias/variance tradeoff for the four estimators of the LRSD. The lines result from varying the bandwidth of each 
estimator. The results are from simulations of Bansal and Yaron's (2004) model allowing the long-run/unconditional standard deviation ratio to 
vary.
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Figure 3. Simulated estimator performance

Notes: Confidence interval coverage and mean bias for four LRSD estimators. The bandwidths are 
chosen so that each estimator has the same variance as the UQS estimator. The confidence interval 
coverage is for a one-sided (on the high side) confidence interval. UQS-mMSE uses the estimated 
minimum-MSE bandwidth in each sample.
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Notes to Figure 4.

This figure summarizes point estimates and confidence intervals for the long-run standard deviation of consumption 
growth from a variety of estimators. The vertical lines separate results from the three data samples: post-war quarterly, 
post-1929 annual, and post-1934 annual (Barro and Ursua, 2010). The first two samples are non-durables and services 
consumption per capita; the third is total consumption per capita. The three horizontal lines give LRSD's from 
benchmark calibrations in the long-run risks literature, Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2010), and 
Kaltenbrunner and Lochstoer (2011). The squares give point estimates, and the vertical lines give the one-sided 90- 
and 95-percent confidence intervals. The RQSmAMSE estimator estimates the optimal bandwidth in each sample 
using 20 autocovariances. The three ARMA models used for each sample are chosen as those that minimize the 
Bayesian information criterion. 
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Long-run SD Moments matched
Campbell and Cochrane (1999) 1.50 SD(dc) 1947-1995
Gourio (2010) 2.00 SD(TFP), 1947-2010
Barro(2006), Wachter (2010) 2.00 SD(dy) 1954-2004, international
Tallarini (2000) 2.30 SD(dc), 1948-1993

Mehra and Prescott (1985) 3.16 SD(dc) 1889-1978
Boldrin, Christiano, and Fisher (2001) 3.60 Various unconditional SDs, 1964-1988
Abel (1990) 3.60 SD(dc) 1889-1978
Barberis, Huang, and Santos (2001) 3.80 SD(dc), 1889-1985

Bansal, Kiku, and Yaron (2008) 4.54 Annual SD(dc), autocorrelations, 1929-2008
Drechsler and Yaron (2011) 4.83 Annual SD(dc), autocorrelations, 1929-2006
Campanale, Castro, and Clementi (2010) 5.20 SD(dy), 1947-2005
Bansal and Yaron (2004);
    Croce, Lettau, and Ludvigson (2010) 6.28 Annual SD(dc), autocorrelations, 1929-1998
Croce (2010) 8.05 Annual SD(dTFP), 1947-2010
Kaltenbrunner and Lochstoer (2010) 8.22 SD(dc), SD(dc)/SD(dy)
Colacito and Croce (2011) 9.02 SD(dc), currency movements

Table 1. Recent calibrations of the long-run standard deviation of consumption growth (annualized)



Table 2. Distribution of international LRSD estimates
25% 50% 75% Rank of US estimate (out of 42)

Full sample 4.30 5.14 6.72 33
Post-war 2.95 3.61 5.93 36

Table 3. Fraction of simulated samples with LRSDs as low as observed empirically

post-war post-1929 post-1834
RQS ARMA(1,1) RQS ARMA(1,1) RQS ARMA(1,1)

Bansal and Yaron (2004) 2.3 0.5 9.9 12.3 7.8 12.4
Bansal, Kiku, and Yaron (2012) 12.2 18.9 30.2 35.4 33.9 40.0

Notes: The numbers are the percentages of simulated samples that yield estimates of the LRSD as low as observed empirically. For each 
sample, the simulations are of identical length to the data. 

Notes: Distribution of estimates of the LRSD from Barro and Ursua's (2010) international panel 
using the RQS estimator.



Figure A1. Estimating normalized curvature

Notes: Confidence interval coverage and mean bias for four LRSD estimators. The three versions of 
the RQS estimator use different lags in estimating the normalized curvature. The Müller estimator uses 
seven Karhunen–Loeve points as in figure 3.
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Markov switching



Figure A3. Bias/variance tradeoffs in an AR(1)

Notes: Each panel plots the bias/variance tradeoff for the four estimators of the LRSD. The lines result from varying the bandwidth of each 
estimator. The results are from simulations of an AR(1) model with different autocorrelations in each panel. 
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Figure A4. Performance in an AR(1) model

Notes: Confidence interval coverage and mean bias for four LRSD estimators. The bandwidths are set 
as in figure 3. The confidence interval coverage is for a one-sided (on the high side) confidence 
interval. The x-axis gives the autoregressive coefficient.
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Figure A5. Bias/variance tradeoffs for long memory

Notes: Each panel plots the bias/variance tradeoff for the four estimators of the LRSD. The lines result from varying the bandwidth of each 
estimator. The results are from simulations of the long-memory model allowing the long-run/unconditional standard deviation ratio to vary by 
changing the parameter φ.
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Figure A6. Long memory simulations

Notes: Confidence interval coverage and mean bias for four LRSD estimators. The bandwidths are 
chosen as in figure 3. The confidence interval coverage is for a one-sided (on the high side) confidence 
interval.
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Figure A7. Bias/variance tradeoffs for notched spectrum

Notes: Each panel plots the bias/variance tradeoff for the four estimators of the LRSD. The lines result from varying the bandwidth of each 
estimator. The results are from simulations of the notched spectrum model allowing the long-run/unconditional standard deviation ratio to vary by 
changing the parameter R.
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Figure A8. Notched spectrum simulations

Notes: Two-sided confidence interval coverage and mean bias for four LRSD estimators. The 
bandwidths are chosenas in figure 3. The confidence interval coverage is for a two-sided confidence 
interval.
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Figure A9. Bias/variance tradeoffs for Markov switching model

Notes: Each panel plots the bias/variance tradeoff for the four estimators of the LRSD. The lines result from varying the bandwidth of each 
estimator. The results are from simulations of the markov switching model allowing the long-run/unconditional standard deviation ratio to vary by 
changing the transition probability.
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Figure A10. Markov switching model simulations

Notes: Confidence interval coverage and mean bias for four LRSD estimators. The bandwidths are 
chosen as in figure 3. The confidence interval coverage is for a one-sided (on the high side) confidence 
interval.
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Table A1. Simulation results
Mueller Mueller (Infeasible) QS RQS
# of KLT points # of KLT points Lags/sample size Minimum cycle length

1 2 8 1 2 8 0.621 0.13 0.064 8 12 16
AR(1) simulation
Bias
ρ=0 0.04 0.05 0.04 0.07 0.06 0.07 0.05 0.03 0.01 0.02 0.02 0.03
ρ=-0.7 0.12 0.11 0.12 0.11 0.11 0.12 0.14 0.07 0.07 0.05 0.06 0.06
ρ=0.7 -0.01 -0.03 -0.15 0.05 0.03 -0.07 -0.02 -0.12 -0.29 -0.21 -0.11 -0.06
ρ=0.9 -0.16 -0.24 -0.59 0.00 -0.07 -0.47 -0.69 -0.59 -0.73 -0.67 -0.55 -0.46
Root mean squared error
ρ=0 1.49 1.05 0.52 1.52 1.07 0.55 1.21 0.54 0.37 0.46 0.56 0.66
ρ=-0.7 1.58 1.12 0.58 1.59 1.11 0.58 1.28 0.56 0.39 0.49 0.59 0.69
ρ=0.7 1.39 0.98 0.45 1.47 1.01 0.47 1.13 0.50 0.41 0.39 0.47 0.57
ρ=0.9 1.19 0.79 0.63 1.41 0.93 0.56 0.78 0.65 0.74 0.69 0.61 0.58
Coverage rate of 90% CI
ρ=0 0.90 0.89 0.89 0.90 0.89 0.88 0.90 0.90 0.90 0.90 0.89 0.90
ρ=-0.7 0.89 0.89 0.88 0.89 0.89 0.87 0.90 0.90 0.89 0.88 0.88 0.88
ρ=0.7 0.90 0.90 0.90 0.89 0.89 0.90 0.90 0.89 0.76 0.93 0.95 0.94
ρ=0.9 0.91 0.92 0.54 0.90 0.90 0.70 0.90 0.64 0.10 0.36 0.79 0.94

MA(1) simulation
Bias
θ=-0.7 -0.01 -0.02 -0.01 0.01 0.01 0.02 -0.01 -0.01 -0.03 0.00 0.00 0.00
θ=0.5 0.08 0.09 0.13 0.06 0.06 0.11 0.10 0.09 0.18 0.05 0.04 0.05
θ=0.7 0.33 0.35 0.51 0.20 0.20 0.36 0.39 0.34 0.72 0.23 0.19 0.18
θ=0.9 3.72 3.81 5.83 1.89 1.92 3.71 4.28 3.87 8.47 3.79 2.78 2.40
Root mean squared error
θ=-0.7 1.40 0.99 0.49 1.44 1.02 0.52 1.14 0.53 0.36 0.44 0.54 0.64
θ=0.5 1.52 1.10 0.59 1.48 1.06 0.58 1.24 0.57 0.45 0.55 0.62 0.70
θ=0.7 1.93 1.39 0.94 1.71 1.22 0.79 1.56 0.74 0.93 0.89 0.85 0.88
θ=0.9 7.51 6.09 7.49 4.47 3.88 5.04 6.74 4.77 9.20 6.45 4.97 4.50
Coverage rate of 90% CI
θ=-0.7 0.90 0.90 0.90 0.90 0.90 0.89 0.90 0.90 0.90 0.91 0.90 0.90
θ=0.5 0.89 0.89 0.87 0.90 0.89 0.87 0.90 0.90 0.86 0.81 0.85 0.87
θ=0.7 0.87 0.85 0.74 0.88 0.88 0.80 0.89 0.83 0.50 0.58 0.72 0.78
θ=0.9 0.60 0.45 0.07 0.72 0.65 0.16 0.46 0.10 0.00 0.08 0.15 0.23
Notes: Results from simulations of AR(1) and MA(1) models with 100 observations. In all cases, the true LRSD is 1. The infeasible 
Müller estimator assumes that the mean of the process is known so that it is not demeaned. The confidence interval for the QS 
estimator is based on the fixed-b asymptotics of Kiefer and Vogelsang (2005). The point estimate for the QS estimator includes the 
bias correction implied by the fixed-b distribution (dividing by the mean of that distribution to give an unbiased estimator).
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