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OA.1 Implied volatility and regression forecasts

Implied volatilities are, under certain assumptions, expectations of future realized volatility
under the risk-neutral measure. If there is a time-varying volatility risk premium, then
implied volatilities will be imperfectly correlated with physical expectations of future realized
volatility, which constitutes actual uncertainty. This section compares implied volatilities to
regression-based forecasts of future volatility to evaluate the quantitative magnitude of that
deviation.

For each market, we estimate the regression
RVip=a; +b; (L) RVis 1 +cilVig 1 +eiy (OA.1)

where b; (L) is a polynomial in the lag operator, L, and a; and ¢; are coefficients. RV, is
realized volatility in month ¢ for market ¢ — the sum of squared daily futures returns during
the month. IV, is the (at-the-money) implied volatility at the end of month ¢ in market 1.

The table below reports the correlation between the fitted values from that regres-
sion — which represent physical uncertainty — and implied volatility. That is, it reports
corr (b; (L) RV;y—1 + ¢iIV;4—1,1V; 1) Ideally, we would like that correlation to be 1, so
that implied volatility is perfectly correlated with physical uncertainty, and hedging implied
volatility hedges uncertainty. Note that this does not require that risk premia are constant.
If b; (L) = 0 but ¢; # 1, risk premia are time-varying, but the physical uncertainty is still
perfectly correlated with implied volatility. It is only deviations of b; (L) from zero that
reduce the correlation. To the extent that the implied volatility summarizes all available

information, we would expect b; = 0.
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Correlations of implied volatility with fitted uncertainty

S&P 500 0.966 | Crude oil 0.998 | Silver 0.984
Treasuries 0.940 | Feeder cattle 0.951 | Soybeans 0.970
British Pound 0.987 | Gold 0.994 | Soybean meal 0.974
Swiss Franc 0.994 | Heating oil 0.992 | Soybean oil 0.946
Yen 0.976 | Lean hogs 0.937 | Wheat 0.998
Copper 0.963 | Live cattle 0.919

Corn 0.994 | Natural gas  0.949

The table shows that across the various markets, the correlations are all high, with a
minimum of 91.1 percent and a mean of 97.0 percent. So while implied volatility is not
literally the same as physical uncertainty, it appears to be fairly close. In the baseline
results, we allow for two lags in the polynomial b, but we have experimented with alternative

specifications and obtain similar results.

OA.2 Factor models and factor-hedging portfolios

In this section we review a useful result from the algebra of cross-sectional regressions: given
a set of K nontradable factors F}, the cross-sectional estimates of the K risk premia, A, are
the average excess returns of K portfolios, each of which has betas of exactly 1 with respect
to one factor, and 0 with respect to the other K — 1 factors: we refer to these as factor-
hedging portfolios for the K factors in F;. The time series of returns for the factor-hedging
portfolios are the slopes of period-by-period cross-sectional regressions. These results hold
in population.

Consider K nontradable factors F}, and a vector of N excess returns r; of test assets.

Nontradable factors have a risk premium of A (a K'x1 vector), so the factor model can be

written as:
ry = A+ F,— EF)+ e 0OA.2
! B A+ B (Fi—E[F])+ e ( )
Nx1 NxK Kx1  nNxK Kx1 Kx1

Cross-sectional regressions operate in two stages. First, they estimate the N x K matrix 8

from time series regressions of the form:
Ty = kf + BFt + €t

where the constant k also depends on the means of the factors F[F}], which is not in-

terpretable in general when factors are nontradable, and is irrelevant for computing 5. The
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second step of the cross-sectional regression could either be estimated using average returns
(in one cross-sectional regression), or as a sequence of period-by-period cross-sectional regres-
sions. The latter approach is often used in practice (as in the Fama-MacBeth version of the
two-step regressions) because it makes standard errors calculation easier, but either method
yields the same point estimates for risk premia A. Here, we also follow the second method,
but for a different reason: because it generates a time-series of factor-hedging portfolios.

We therefore run, for each period ¢, cross-sectional regressions of r; on the estimated f:

re = a; + B9 + uy

obtaining a time-series of K x 1 slope vectors g;. Risk premia A are then estimated as the
time-series average of the slopes: A = E[g,].
The time-series slopes g; have a useful interpretation. They are calculated in each period

as:

g =(88)"B'r, (OA.3)

This equation clarifies that g; are themselves excess returns (they are the returns of
portfolios of the underlying N assets, with weights w = (3 8)~'#'); the risk premia \ are
the (risk premia) average excess returns of these K portfolios g;. We can now explore the

properties of these portfolios. Substituting r; out from (OA.2) we have:

g = (BB8) B BN+ B(F, — E[F]) +e) = A+ (F, — E[F)]) + (88) ' Be

Under suitable assumptions on the cross-sectional dispersion in the £ (see Giglio and Xiu
(2019) for a formal analysis) the last term is close to zero for large N (intuitively, the idiosyn-
cratic errors are diversified away, and the g, are well-diversified portfolios). We therefore can

write:
gt ~ )\ + (Ft — E[Ft])

From this equation, it is clear that, as expected, F[g;] = A. In addition, these K portfolios
have the special property of being exposed to exactly one of the underlying factor F; each:
the matrix of exposures of g; to factor innovations F; — E[F}] is simply the identity matrix.
So the first portfolio has betas [1, 0, 0, 0, ...], the second portfolio has betas [0, 1, 0, 0, ...],
and so on. This is why we refer to these portfolios as factor-hedging portfolios.

Finally, it is worth pointing out that the latter property also holds in any sample: the

estimated betas of the factor-hedging portfolios with respect to the nontradable factors will
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be the vectors [1, 0,0, 0, ...], [0, 1, 0, 0, ...] and so on in every sample.

OA.3 Approximating return sensitivities

This section describes the approximation of option returns used to obtain the rv and v
portfolios. P denotes the price of an at-the-money straddle or strangle. o is the Black—
Scholes volatility, n is the time to maturity, F' is the forward price, and K is the strike. N
denotes the standard Normal cumulative distribution function.

For the calls and puts, respectively, we set

2

K.y = Fexp (ba\/ﬁ + %n) (OA4)
o2

Ky = Fexp (—ba\/ﬁqL ?n) (OA.5)

We calculate everything for arbitrary b. A straddle is the special case where b = 0, while a

strangle has positive b, so that both the put and call are out of the money.

OA.3.1 Prices

We first calculate the price of a strangle. The Black—-Scholes formula gives

2

P.y = FN(-b)— Fexp <b0\/ﬁ+ %n) N (—b — 0\/5) (OA.6)
Pui = —FN(=b)+ Fexp (—baﬁ + %Zn) N (=b+ ov/n) (OA.7)

So the total price is

P = Pcall + Pput =F (N (_b> - N (_b)) (OA8)
-F (exp <ba\/ﬁ—l— %n) N (—b — cr\/ﬁ) — exp (—ba\/ﬁ—l— %n) N (—b + om.})
~ FN'(-b)20vn (OA.10)

where the second line uses a first order approximation to N (z) around —b and exp (ba\/ﬁ + %Qn) ~
1.
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OA.3.2 Return derivatives

The local approximation for returns that we use is

Oryyr 0 P(Fy1,0041)

01 Oxia P(Fy,00) (OA.11)
and we evaluate the derivatives at the point Fy,y = F}, 0441 = 0y.
We have
22:11 - PJJTT (OA.12)
o /
- ?)—Z) jzvo—t(b) (OA.13)
1
~ % (OA.14)

where P, ; denotes OP (Fyi1,0411) /00v+1 (evaulated at o7, = o7), and using the approxi-
mation that N’ (b) ~ N’ (—b). We then have

8rt+1

— =~ OA.15
0 (Aoiyr/oy) ( )
Next, for squared returns, we have

Oy Prp,
= : OA.16
OF2, B, ( )

1 N'(=b) + N (b)
= OA.17
FtN/ (—b) 20‘\/5 FtO't\/ﬁ ( )
1

N —— OA.18

Again using N’ (b) = N’ (—b). Finally, note that 0f;,1 = OF,11/F,11, so that

2
LJ% — artzlpfaf (OA.19)
0 (ft+1/0t) aFt+1
1
~ — A2
. (04.20)

OA.3.3 Accuracy

To study how effective the above approximation is, we examine a simple simulation. We as-

sume that options are priced according to the Black—Scholes model. We set the initial futures
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price to 1 and the initial volatility to 30 percent per year. We then examine instantaneous
returns (i.e. through shifts in ¢ and S) on the v and rv portfolios for straddles defined
exactly as in the main text, allowing the futures return to vary between between +/ — 23.53
percent, which corresponds to variation out to four two-week standard deviations. We allow
volatility to move between 15 and 60 percent — falling by half or doubling.

The top two panels of figure OA.3 plot contours of returns on the rv and v portfolios
defined in the main text, while the middle panels plot the contours predicted by the approx-
imations for the partial derivatives. For the iv portfolio, except for very large instantaneous
returns — 15-20 percent — the approximation lies very close to the truth. The bottom-right
panel plots the error — the middle panel minus the top panel — and except for cases where the
underlying has an extreme movement and the implied volatility falls — the exact opposite of
typical behavior — the errors are all quantitatively small, especially compared to the overall
return.

For the rv portfolio, the errors are somewhat larger. This is due to the fact that we
approximate the rv portfolio using a quadratic function, but its payoff has a shape closer to
a hyperbola. Again, for underlying futures returns within two standard deviations (where
the two-week standard deviation here is 5.88 percent), the errors are relatively small quan-
titatively, especially when o does not move far. Towards the corners of the figure, though,
the errors grow somewhat large.

These results therefore underscore the discussion in the text. The approximations used
to construct the v and rv portfolios are qualitatively accurate, and except in more extreme
cases also hold reasonably well quantitatively. But they are obviously not fully robust to all
events, so the factor model estimation, which does not rely on any approximations, should

be used in situations where the nonlinearities are a concern.

OA.3.4 Empirical return exposures

To check empirically the accuracy of the expressions for the risk exposures of the straddles,
appendix figure OA.2 plots estimated factor loadings for straddles at maturities from one to

five months for each market from time series regressions of the form

2
VU (VTR G [ RN A (T OA.21
Tz,n,t az,n + Bz,n ]V;,t—l + 62’”2 (I‘/z‘,t—l) + n I‘/iyt—l + gz,n,t ( . )

The prediction of the analysis above is that B{ =0, 5{ i = 1/n, and Bfnl V=1,
Across the panels, the predictions hold surprisingly accurately. The loadings on f;; are all

near zero, if also generally slightly positive. The loadings on the change in implied volatility
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are all close to 1, with little systematic variation across maturities. And the loadings on the
squared futures return tend to begin near 1 (though sometimes biased down somewhat) and
then decline monotonically, consistent with the predicted n~! scaling.

Table OA.2 reports results of similar regressions for each underlying of the returns on the
rv and v portfolios on the underlying futures return, the squared futures return, and the
change in implied volatility. The table shows that while the Black—Scholes predictions do not
hold perfectly, it is true that the rv portfolio is much more strongly exposed to realized than
implied volatility, and the opposite holds for the iv portfolio. The coefficients on (f;/ at_l)Q
average 0.78 for the rv portfolio and 0.12 for the v portfolio (though that average masks
some variation across markets). Conversely, the coefficients on Acy/oy_1 average 0.03 for
the rv portfolio and 0.81 for the v portfolio Furthermore, the R?s are large, averaging 70
percent across the various portfolios, implying that their returns are well described by the

approximation (4).

OA.3.5 Volume

Figure OA.14 reports the average daily volume of all of the option contracts across maturities
1 to 6 months. For crude oil, which we use here as a reference contract, the figure reports
average daily volume in dollars; for all other contracts, it reports the average daily volume
relative to crude oil. Empirically, crude oil options have volume numbers of the same order
of magnitude as the S&P 500, while there is more heterogeneity across the other markets.
Looking across maturities, the general pattern is that dollar volume declines by about a
factor of three in almost all the markets between the 1- and 6-month maturities — so the

6-month maturity has less volume, but far from zero.

OA.3.6 Alternative scaling for returns

Because returns have a price in the denominator, if that price is measured with error, returns
can be biased upwards. The v portfolio is net long the straddles, while the rv portfolio has
a total weight of zero, so measurement error in prices would bias iv returns up but not rv
returns. To account for that possibility, this section examines results when all the straddle
returns are scaled by the price of the one-month straddle, instead of the price of a straddle
with the same maturity.

Specifically, denoting P, ; the price of a straddle of maturity n on date ¢, the return on
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an n-month straddle used in the main results is

P, - P,
Ry =~ -t (0A.22)
Pn,t
We consider returns on a portfolio that puts weight ?{’: on the n-month straddle and weight
1— % on the risk-free asset (which is a tradable portfolio), which is
P, — P, P, P
rescaled n—1,t+1 n,t 4 n;t n,t
rr _ 1 ==2)r OA.23
i Py Py ( Pl,t) st ( )
Pn71t+1_Pnt Pnt
= ’ ’ - — OA.24
P TR (0424

This portfolio is useful for two reasons. First, the one-month maturity has the highest volume
in most markets we study, and it is typically considered to be the most accurate. Second, this
eliminates differences in bias across maturities since in this specification, the denominator is

the same for all n.

For r7¢3¢4id  similar calculations to those above yield the results that

2, .rescaled
0 T+l

a(ft+1/‘7t)2

rescaled
8Tn,t—s—l

8(A0t+1/0t)

(OA.25)

5 oS-

(OA.26)

We then calculate alternative rv and iv portfolios as

3 /7715
Z-U:escaled — ( /5/12Tgiscaled . 1/127,,71":2tscaled) (OA27)

12

5/48
pojeseted = 228 (i3t Ty (0A.28)

Figure OA.15 replicates figure 3 with the rescaled returns. The results are nearly identical
to the baseline for both the Sharpe ratios on the iv and rv portfolios and the estimated
factor risk premia. These results show that when we correct for the potential bias induced
by low liquidity and measurement error at longer maturities, the estimates are essentially

unchanged.
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OA.4 Calculating the covariance of the sample mean

returns

There are two features of our data that make calculating covariance matrix of sample means
difficult: we have an unbalanced panel and the covariance matrix is either singular or nearly
so. We deal with those issues through the following steps.

1. For each market, we estimate the two largest principal components, therefore modeling

straddle returns for underlying 7 and maturity n on date t as
Timt = MinS1it + A2inf2it + Oing (OA.29)

where the A\ are factor loadings, the f are estimated factors, and € is a residual that we take
to be uncorrelated across maturities and markets (it is also in general extremely small).

2. We calculate the long-run covariance matrix of all J x 2 estimated factors. The
covariance matrix is calculated using the Hansen—Hodrick method to account for the fact that
the returns are overlapping (we use daily observations of 2-week returns). The elements of
the covariance matrix are estimated based on the available nonmissing data for the associated
pair of factors. That means that the covariance matrix need not be positive semidefinite.
To account for that fact, we set all negative eigenvalues of the estimated covariance matrix
to zero.

Given the estimated long-run covariance matrix of the factors, denoted ¥, and given the
(diagonal) long-run variance matrix of the residuals 6, denoted ¥y, the long-run covariance

matrix of the returns is then

Y, = AEfA/ + X (OA30)

where A is a matrix containing the factor loadings .
3. Finally, it is straightforward to show that the covariance matrix of the sample mean

returns is

r=MOY, (OA.31)

where ® denotes the elementwise product and M is a matrix where the element for a given
return pair is equal to the ratio of the number of observations in which both returns are
available to the product of the number of observations in which each return is available
individually (if all returns had the same number of observations 7', then we would obtain

the usual 7! scaling). We then have the asymptotic approximation that

P = N (7, %) (OA.32)
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where 7 is a vector that stacks the 7; and 7 stacks the 7; and = denotes convergence in
distribution.
To construct g, we simply divide the 4, j element of >; by the product of the sample

standard deviations of r; and r;.

OA.5 Calculating risk prices with unbalanced panels

and correlations across markets

In estimating the factor models, we have two complications to deal with: the sample length
for each underlying is different, and returns are correlated across underlyings. This section
discusses how we deal with those issues.
We have the model
Er [Ri] = \ifi + a (OA.33)

where Er. denotes the sample mean in the set of dates for which we have data for underlying
1, R; is the vector of returns of the straddles, \; is a vector of risk prices, f; is a vector of risk
prices, and «; is a vector of pricing errors. Note that these objects are all population values,
rather than estimates. In order to calculate the sampling distribution for the estimated
counterparts, we need to know the covariance of the pricing errors. Note that there is also

a population cross-sectional regression with
Er [Ri] = ai + BiEr, [fi] + Ery [&4] (OA.34)

where ¢; is a vector of residuals and f; is a vector of pricing factors. That formula can be

used to substitute out returns and obtain

Since a;, \;, and §; are fixed in the true model, the distribution of «; depends only on the
distributions of the sample means Er, [f;] and Er, [¢;]. Denoting the long-run (i.e. Hansen—

Hodrick) covariance matrix of f; as ¥y, and that of ¢; as X.,, we have
var (oy) = BT 'S80+ T 15, (OA.36)

Since the \; are estimated from a regression, if we denote their estimates as \;, we obtain
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the usual formula for the variance of 5\1 — N

var <5\l — )\i>

(B1B:)~" Blvar (o) B; (B6:) (OA.37)
= S+ (B18:) B350 (B8) (OA.38)

Beyond the variance of \i, we also need to know the covariance of any pair of estimates, Ni

and ;\j. Using standard OLS formulas, we have

(OA.39)

—
>
[
> >

< <

-] | BB Bl
- (88) " B

~— —

~—

_ 'W@ij£mm+%¢m>] 0A10

I (5;-5]' Bi (B2Er, i) + Ery [44])

~—

The covariance between 5\1 and 5\]- is then

Tl 2
T,

<Zf,i,j + (ﬁiﬁl)_l 5125,1',]‘52 (5&52)_1> (OA.41)

where ¥, ; and X, ; ; are now long-run covariance matrices (again from the Hansen-Hodrick
method). Using these formulas, we then have estimates of risk prices in each market indi-

vidually along with a full covariance matrix of all the estimates.

OA.6 SDF-based analysis

The marginal effects of realized and implied volatility can be estimated using the stochastic
discount factor representation of the factor model estimated in the previous section. Specif-

ically, given the set of straddle returns in each market, one can construct a pricing kernel
M, of the form

v fit f2 fit ? AIVAIV;t
M, = M —m! =22 — ) : —my Y — OA .42

! Vi S\ IViia A ( )
where M, represents state prices (or marginal utility) and 1 = E;_; M, R, for any return priced
by M. The difference between this specification and that in the previous section is that the
coefficients m - represent the marginal impact of each term on marginal utility, whereas the
v coefficients represent the premium for total exposure to the factors. Cochrane (2005)

discusses the distinction extensively.
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Denoting the covariance matrix of the factors in market ¢ by 3J;, the m coefficients can
be recovered as
/ /
[mﬁmfg,mfw] =3t ['yfmfgm“v} (OA.43)

The m’s now represent Sharpe ratios on portfolios with exposure to each of the individual

AT

factors, orthogonalized to the other two. That is, m2!V is the Sharpe ratio for a portfolio

i
2

AIV; ¢ : it fi

Wi that is orthogonal to Vo and <—th_l .

Figure OA.12 reports the results of this exercise. The findings are qualitatively consistent

exposed to the part of

with the main results in figure 3 and in fact even stronger quantitatively. The marginal
effect of an increase in uncertainty on marginal utility, holding realized volatility fixed, is
consistently negative, while an increase in realized volatility increases marginal utility. The
fact that these results are close to the benchmark case is a consequence of the weak correlation
between innovations in realized and implied volatility, so that the rotation by X; ' has small
effects.

Figure OA.12 also reports premia on orthogonalized versions of the rv and v portfolios.!

Again, the results are similar to the main analysis.

OA.7 Robustness: ETF options

This section provides an alternative check on the results for crude oil options by examining
returns on straddles for options on two exchange traded funds. The first is the United States
Oil Fund (USO), which invests in short-term oil futures. USO has existed since 2006, and
Optionmetrics reports quotes for options beginning in May, 2007. The second fund is the
Energy Select Sector SPDR fund (XLE), which tracks the energy sector of the S&P 500.
XLE has existed since 1998 and Optionmetrics reports data since December, 1998.

We eliminate observations using the following filters:

1. Volume less than 10 contracts

2. Time to maturity less than 15 days

3. Bid-ask spread greater than 20 percent of bid/ask midpoint

4. Initial log moneyness — log strike divided by the futures price — greater than 0.75
implied volatility units in absolute value (where implied volatility is scaled by he square root
of time to maturity).

We then calculate straddle returns as in the main text over two-week periods and average

!These are constructed simply through a rotation. The v, portfolio has a positive correlation with rv
and zero correlation with v, whie the iv | portfolio has zero correlation with rv and a positive correlation
with v.
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across the two straddles nearest to the money for each maturity, weighting them by the
inverse of their absolute moneyness.

The top section of table OA.7.1 reports the number of (potentially overlapping) two-week
straddle return observations across maturities for USO, XLE, and the CME Group futures
options used in the main analysis. Since the CME data goes back to 1983, there are far more
observations for that series than the other two. More interestingly, though, the number
of observations only declines by about 10 percent between the 1- and 6-month maturities,
while it falls by more than 2/3 for the XLE and USO samples. The CME data therefore has
superior coverage at longer horizons, which justifies its use in our main analysis.

The bottom section of table OA.7.1 reports the correlations of the USO and XLE straddle
returns with those for the CME on the days where they overlap. The correlations are
approximately 90 percent at all maturities for USO and 50 percent for XLE. The 90-percent
correlations for USO and the CME sample provide a general confirmation of the accuracy of
the CME straddle returns, since we would expect the USO and CME options to be highly
similar as USQO literally holds futures. The lower correlation for XLE is not surprising given

that it holds energy sector stocks rather than crude oil futures.

Table OA.7.1.
Maturity: 1 2 3 4 ) 6
# obs. UsSo 1640 1616 1721 1679 1118 525
XLE 2612 2545 2454 1928 1134 369
CME 6762 6645 6817 6801 6606 5998
Corr. w/ USO 093 096 095 092 089 0.83
CME XLE 0.43 048 050 0.49 0.50 0.53

In the main text, the RV and IV portfolio returns are calculated using 5- and 1-month
straddles. Since the number of observations drops off substantially between 4 and 5 months
for both XLE and USO, though, here we examine returns on RV and IV portfolios using
both 5- and 4-month straddles for the long-maturity side.

Figure OA.16 plots estimated annualized Sharpe ratios along with 95-percent confidence
bands for the RV and IV portfolios using 4- and 5-month straddles for the three sets of
options. In all four cases, the three confidence intervals always overlap substantially. The
fact that the sample for the CME options is far larger is evident in its confidence bands
being much narrower than those for the other two sources. For the IV portfolios, USO has
returns that are close to zero, but its confidence bands range from -1 to greater than 0.5,
indicating that it is not particularly informative about the Sharpe ratio.

Table OA.7.2 reports confidence bands for the difference between the IV and RV average
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returns constructed with the CME data and the same portfolios constructed using USO
and XLE. The top panel shows that the differences for the IV portfolios are negative for
USO and positive for XLE, but only the difference for USO constructed with the 4-month
straddle is statistically significant. The bottom panel similarly shows mixed results for the
point estimates for the differences for the RV portfolios, with none of the differences being

statistically significant.

Table OA.7.2. Differences between CME and USO, XLE mean returns
USO - CME, 4mo. USO - CME, bmo. XLE - CME, 4mo. XLE - CME, 5mo.

IV return  -2.2 -2.2 -0.8 -1.4
[-3.9,-0.2] [-4.8,0.4] [-2.5,4.1] [-4.1,6.3]

RV return 0.43 0.47 -0.27 0.67
[-0.6,1.4] [-0.6,1.4] [-1.8,1.3] [-1.5,2.6]

Notes: the table reports percentage (two-week) returns on USO and XLE minus returns on

CME RV and IV portfolios. 95-percent confidence intervals are reported in brackets.

The fact that the USO and CME straddle returns are highly correlated does not neces-
sarily mean that the CME data is accurate for the mean return on the straddles. To check
whether the difference in the means observed in the USO and XLE data would affect out
main results, we ask how the Sharpe ratios of the RV and IV portfolios in the CME data
would change if we shifted their means by the average differences reported in table OA.7.2.
The bars labeled “CME, USO adj.” and CME, XLE adj.” show how the confidence bands
would change if we shifted them by exactly the point estimates from table OA.7.2. Note that
this is not the same as shifting the Sharpe ratio for the CME data to match that for the XLE
or USO data. The reason is that the difference in table OA.7.2 is calculated only for the
returns on matching dates, whereas the Sharpe ratio calculated in figure OA.16 is calculated
using the full sample for the CME data. So the two adjusted bands take the full-sample
band and then shift it by the mean difference calculated on the dates that overlap between
the CME data and XLE or USO.

Figure OA.16 shows that the economic conclusions drawn for the crude oil straddles are
not changed if the mean returns are shifted by the differences observed in table OA.7.1. The
RV portfolio returns remain statistically significantly negative in all four cases, the changes in
the point estimates are well inside the original confidence intervals. The top panel shows that
the IV returns using 5-month straddles are similarly unaffected. For the 4-month straddles,
the only difference is that with the USO options, the estimated Sharpe ratio falls by about
half and is no longer statistically significantly greater than zero. So, again, out of eight cases

— IV and RV with 4- and 5-month straddles — in only one is there a nontrivial change in the
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conclusions, and even there the Sharpe ratio on the IV portfolio does not become negative,
it is simply less positive.

Overall, the period in which the USO and XLE options are traded is too short to use
them for our main analysis. This section shows that the USO straddle returns are highly
correlated with the CME returns. The mean returns on the XLE and CME straddles are
highly similar, while they differ somewhat more for CME and USO. However, shifting the
means used for the CME options in the main analysis by the observed difference between

the CME and USO options does not substantially change any of the conclusions.

OA.8 Model

To help provide some context for the empirical results and fit them into a standard frame-
work, this section describes results from a simple extension of the standard long-run risk
model of Bansal and Yaron (2004). The technical analysis is in Section OA.9; here we report
the specification and key results.

Agents have Epstein—Zin preferences over consumption, C;, with a unit elasticity of

substitution, where the lifetime utility function, v;, satisfies

v = (1—p)logC; + . b log Eyexp (1 — a) vi41) (OA.44)

—

where « is the coefficient of relative risk aversion. Consumption growth follows the process

Ac = ma\[ohy o + 0%, e+ by (OA.45)
Ty = QpTi1 + Wallet + W GMo,Git — Wa,BNo,B (OA.46)
02 = (1= 00) 0% 4 003y +wjlle s, for j € {B,G} (OA.47)

where €, and the 7., are independent standard normal random variables. x; represents the
consumption trend. We have two deviations from the usual setup. First, we include jump
shocks, Jb;, where b; is a Poisson distributed random variable with intensity A and J is the
magnitude of the jump. This addition allows for random variation in realized volatility and
is drawn from Drechsler and Yaron (2011). Second, there are two components to volatility,
which we refer to as bad and good. Bad volatility, 0%, is associated with low future con-
sumption growth, while good volatility, 0%, is associated with high future growth (where all
of the w. coefficients are nonnegative).

Define realized volatility to be the realized quadratic variation in consumption growth,

while implied volatility is the conditional variance of consumption growth (these are formal-
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ized in the appendix).

Proposition 1 The average excess returns on forward claims to realized and implied volatil-

ity for consumption growth in this model are,

E[RViy1 — Pryd] = J*A(1 —exp(—al)) (OA .48)
E[IViyy — Py = (a—1) (Uy@ (We.oWG — We BWB) + Vy o (wé + w%)) (OA.49)

where P,y is the forward price for x. E[IViy1 — Prvy] > 0 for w, ¢ sufficiently larger than
Wy, p. Furthermore, the sign of E[RViy1 — Pryy| is the same as the sign of J and of the
conditional skewness of consumption growth (i.e. the skewness of Aciy1 conditional on date-

t information).

Proposition 1 contains our key analytic results. We analyze premia for realized and
implied volatility on consumption — real activity — consistent with the focus in the empirical
analysis on macro volatility and uncertainty. The negative premium on realized volatility
is driven by downward jumps, similar to the literature on the volatility risk premium in
equities (Drechsler and Yaron (2011), Wachter (2013)). The sign of the premium on implied
volatility depends on the contribution of good versus bad volatility. When good volatility
shocks, where high volatility is associated with high future growth (e.g. due to learning
about new technologies), are relatively larger than bad volatility shocks (w,; qwa > wy pwi)
the premium on implied volatility can be positive.

Section OA.9 provides a numerical calibration of the model using values close to those in
Bansal and Yaron’s (2004) original choices. It shows that the model generates quantitatively
realistic Sharpe ratios for implied and realized volatility in addition to a reasonable equity
premium.

The key economic mechanism for the positive pricing of uncertainty shocks is that high
volatility is sometimes associated with higher long-term growth. Intuitively, that mechanism
contributes positive skewness to consumption growth, while the jumps contribute negative
skewness. The appendix provides novel evidence on the skewness of consumption growth
consistent with the model. In particular, conditional skewness in the model, which depends
only on the jumps, is more negative than the skewness of expected consumption growth,
which depends on the relationship of volatility and long-run growth (x). We show that
consumption growth displays exactly the same pattern in US data.

So a simple version of the long-run risk model with good and bad volatility shocks and
jumps in consumption can match our key empirical facts. Furthermore, the empirical results

are sharp, in the sense that the sign of the premium on implied volatility identifies the
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relative importance of the bad and good volatility shocks, while the sign of the premium on

realized volatility identifies the sign of consumption jumps.

OA.9 Model details

OA.9.1 Dynamics

Consumption growth follows

Acy = myq + \/0123,7;1 + 0818+ Jb (OA.50)
Ty = (ﬁfﬂxt*l + W)zt + Wz, GMNo,Gt — Wz, BTo,B t (OA51)
0t = (L= 05)T5 + Go0s 1y + Wyl (OA.52)

for j € {G, B}. The shocks ¢, 1., ng, np are independent and Gaussian with unit variances.
The w coefficients are all assumed to be positive. b; is a Poisson random variable with
intensity A.

The dynamics can also be written as

Nzt
T . 0 Ti— Wy Wy 0 '
R ¢ R “ nee | (OA.53)
o, —0 0 ¢, o, ,—0 0 we wsp 0
it
ACt = X411+ O-t271€t —+ Jbt (OA54)
Y, = FY, i+ G (OA.55)

where Y; = [x4,0? — %], etc. The fact that the model can be rewritten with only a single
variance process follows from the linearity of the two processes, the fact that they have the
same rate of mean reversion, and the fact that they appear additively. We can then write

consumption and dividend growth as

Acy, = &Y+ a2+ g Y + Jb (OA.56)
Ady = v (C/th—l +V0* + gy Y + Jbt) + WaEqy (OA.57)

for vectors cy and gy. Ad; is log dividend growth, which we will use for modeling equities.

It satisfies Ady = yAc; +waear (€4t ~ N (0,1)), where v determines the leverage of equities.
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OA.9.2 Preferences

We assume agents have Epstein—Zin preferences with a unit IES,

log Eyexp ((1 — o) v41) (OA.58)

V¢ = (1—B)Ct+1/8

—

vep = 8 log Eyexp ((1 — @) (vegrr + Aciyq)) (OA.59)

l1—«

where ve; is the log utility /consumption ratio, ve, = vy — ¢;. We look for a solution to the

model of the form
vey =0+ vy Y, (OA.60)

Inserting into the recursion for wve,

ve = 7 fa log E; exp ((1 — ) <17 + 0y Y1 + Y+ gy Yiera + Jbt+1>> (OA.61)

= 1 fa log F; exp ((1 —a) <17 + 0y (FY; + Giy) + &y Y + /0% + gy Yier + J%QQBD)

l—«

2

(vy GG'oy + 3% + ¢4 Y)) + L)\ (exp ((1 — o) DA-63)

= B+ F+cey)Yy)+8 1— o

Matching coefficients,

1—
v = BLF +d)+ gy (OA.64)
1—
vy, = B (cg/ + Taggf) (I —pBF)™" (OA.65)
1-— 1

= % ( 5 « (vy GGoy +6%) + m)\ (exp((1 —a)J) — 1)> (OA.66)

The pricing kernel is then

exp ((1 — a) (vey))
M, —a OA.67
o Eiexp ((1 — a) (ven + Acya)) p (~ahcen) ( )
mir = —log B+ (1 —a)ve — alce —log Eyexp ((1 — ) (vegr + Ac (DA.68)
Or, equivalently,

M1 = Mo + My Y + myipe1 — an/02 + ¢4 Yier — b (OA.69)
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mog = —logf — @ (vy GG'vy +5%) = A(exp (1 —a) J) — 1)  (OA.70)

/ (1 — a)2
My = —C& =5 9r (OA.T1)

m, = (1—a)vyG (OA.72)
OA.9.3 Pricing equities

We have the usual Campbell-Shiller approximation for the return on equities, 7,1, with
Ti+1 = Ko + K12i4+1 — 2t + Adt+1 (OA.73)

where z; is the log price/dividend ratio of equities. We look for a solution of the form

2 = 29 + 24 Yy, which leads to the pricing equation

mo + my Y + My — /02 + gy Yicrn — aJbi
0 = log E; exp +ro+ (k1 — 1) 20 + k124 (FY; + Gneyr) — 24 Y, (OA.74)
+7 (4 Yy + /3% + ¢4 Yiersr + Jbiir) + waga

The solution satisfies

o= (1-k)" mo + ko + A(exp ((v —a) J) — 1)
+% ((mn + K12y G) (M) + K12y G) + (v — 04)2 7% + wfl)

) (OA.75)

1 _
= (i 2+ 5 (- e ) (1= ) (0A.76)

OA.9.3.1 Average excess returns

To get average returns, on equities, first note that

ko + (k1 — 1) 20 + k124 (FY; + Gney) — 24 Y,
log By [exp (rev1 —rpe)] = log By |exp [ +v (Y + /02 + gy Yieryr + Jbig) + wacal@AJT)
—rpo — T}’lYQ
= Ko+ (k1 — 1) 20 —rp0 + (Kizy F — 24 + ¢y — 7"}71) Y, (OA.78)

1 1
+3 (k12 GG 2y + 7% (62 + g4 V1)) + 50.13 + A (exp (vJ) — (DA.79)
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The risk-free rate is of the form ry; = 1o + 1% Vi, with

1—
rro = logB+ %02 + A(exp ((1 —a) J) —exp (—ad)) (OA.80)
/ / 1 /
AT 504291/ (OA.81)

which allows for the calculation of the average excess return on equities. The conditional

standard deviation of equity returns is

VR4 GG 2y + 7267 + 22\ (OA.82)

OA.9.4 Pricing realized volatility

Since our empirical work estimates premia for realized and implied volatility for macro
variables, we examine here the pricing of realized and implied volatility for Ac;. 1. The

cumulative innovation in consumption between dates ¢ and t + 1 is
ACH—I — EtAct-i—l = O't2€t+1 +J (bt+1 — /\)

The first part is typically thought of as a diffusive component. That is, we can think of
€ir1 = Byr1 — By, for a standard (continuous-time) Brownian motion B;. Similarly, b, is
the innovation in a pure jump process, by 1 = Nyyp — Ny, where Ny is a (continuous-time)
Poisson counting process. Now consider measuring the total quadratic variation in those two
processes (i.e. as though we were measuring realized volatility from daily futures returns, as
in our empirical analysis). The quadratic variation in B between dates ¢ and ¢ + 1 is exactly
1, while the quadratic variation in NV is exactly Ny 1 — Ny = b1 We then say that the

realized volatility in consumption growth between period t and t 4+ 1 is
R‘/;f—l—l = 0'152 + J2bt+1 (OASS)

In this case, the diffusive part of the realized volatility is entirely predetermined. This is
a typical result. It is only the jumps that contribute an unexpected component to realized

volatility. The pricing of realized volatility will therefore depend on the pricing of jumps.
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The price of a forward claim on RV, is

Pave = B, |-EP M) g
’ Ey exp (my41)

= F

ex
P ( — [% ((1 — a)2 vy, GGy + o? (62 + gg,Yt)) + A(exp (—aJ) — 1)}
= o7+ J*\exp (—aJ)

The average excess return on that forward is then

E;[RViy1 — Pryyl = of + PN — a7 — J*Aexp (—aJ) (OA.84)
= JA(1 —exp(—al)) (OA.85)

The sign of this object is equal to the sign of J. Note also that this is the sign of the

conditional skewness of consumption growth.

OA.9.5 Pricing uncertainty

We define uncertainty on date ¢ as expected realized volatility on date t + 1. That is, it is

the conditional variance for Ac;yq. So we say
IV, = o2+ J*\ (OA.86)

We now consider the price and excess return for a forward claim to I'V;;.

ex m
Py = B, |-SR0me) [Vm}
Eyexp (my41)
].—Oé U Gnt 1
_ 2 Y + /
- J>‘+O- +¢Uo-t+Et eXp(_% 1_& GG//) Gy Mt+1
_ JZ)\—|—5'2 +¢ga'? (]‘ UYGTHH)QYG?%H]

% 1—a) GG’UY))

= A+ + .07+ (1—a) ( WG (076 + Vroa) )

+wp (Vy ,Wp — Vy Ws B)

0OA.21
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where the last line follows from straightforward but tedious algebra. The average return on

the claim on uncertainty is then

ElVid = Prvs = JA+62+ 6067 — [ A+ 0% 4 6062+ (1 —a) | 40 (atna + ovowe) , L)
+wp (VyoWp — VyaWs B)

- _ (1 _ CY) ( wWa (UY,zwx,G + UY’O—CL)G> )

+wp (Vy,Wp — Vy2Ws B)

In the standard case from Bansal and Yaron (2004), we would have w, ¢ = w, p = 0, so this
would be
E[IVi] — Py = (a — 1) vy, (wg + wh) (OA.89)

Since vy, < 0, the premium for IV will be negative in that case. Now when w, ¢ can be

positive, we have
E[IVi] — Prvye = (a — 1) (vye (Wo,cwe — Wapwi) + vy, (g + wh)) (OA.90)

Since vy, > 0, if w, ¢ is sufficiently large relatively to w, g, the premium can be positive.

The Sharpe ratio on this object depends on the standard deviation of IV, — Py, which

is exactly /w2 + w¥.

0OA.9.6 Calibration

The calibration is relatively close to Bansal and Yaron’s (BY; 2004) choices, with a few
changes. For the preferences, we set § = 0.998 and o = 15. [ is as in BY, while « is
set somewhat higher to help match the equity premium. We study post-war data here, in
which the volatility of consumption growth is lower, thus necessitating higher risk aversion
to match the equity premium. Leverage, 7, is set to 3.5, on the upper end of the range of
values studied by BY.

The jump intensity is 1/18, implying jumps occur on average once every 18 months, while
the jump size J = —0.015.

The persistence of z and o2 are 0.979 and 0.987, as in BY.

o = 0.0039, which is half the value used in BY in order to match the lower consumption
volatility noted above. The standard deviation of innovations to z is set to 0.06 X, which is
somewhat higher than the value of 0.044 in BY. Of that, w, = w, ¢ = 0.0129 and w, p = 0.
Similarly, wg = wp = 1.62 x 1075, so that the standard deviation of innovations to o2 is
0.23x107%, as in BY. Finally, wy = 0.01.
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OA.9.7 Results

The table below lists key moments from the model along with analogs from the data. The
model moments are based on a monthly simulation of the model that is aggregated to the
quarterly frequency to match quarterly data observed empirically (see also BY).

The first three rows on the left show that the model is able to generate realistic values
for mean, standard deviation, and Sharpe ratio for equity returns. The top row on the
right shows that the volatility of consumption growth is somewhat higher than in the data.
However, this value is still smaller than that used by Bansal and Yaron (2004) by 40 percent.
Our calibration of 0.87 percent is the midpoint between Bansal and Yaron’s (2004) original
value and the value in the post-war data. Using a smaller volatility would require either
increasing some other form of risk (e.g. long-run risk or stochastic volatility) or risk aversion
in order to generate a realistic equity premium.

Next, the table shows that the Sharpe ratios for claims on RV and IV are approximately
-0.21 and 0.19, respectively, which agree well with the empirical values (which are calculated
as the overall means across all 19 markets we study; see figure 3). These are the key moments
that the model was designed to match. They show that it is able to generate quantitatively
realistic premia for uncertainty and realized volatility shocks.

As discussed in the main text, the economic mechanism behind the negative premium on
RV is negative conditional skewness in consumption growth, while the mechanism behind
the positive premium for IV — the good volatility shocks that raise future consumption
growth — pushes in the direction of positive skewness. That implies that the skewness of
the conditional expectation of consumption growth should be less negative than conditional
skewness. To test that idea, we examine skewness in the model and data. The information
set used for conditioning here is lagged consumption growth. That is, we look at results
involving regressions of consumption growth on three of its own lags in both the model and
the data.

The table shows that the data and model both share the feature that the conditional
expectation of consumption growth is much less negatively skewed than the surprise in
consumption growth, consistent with the main mechanism in the model. This is not a
moment that the model was explicitly designed to match. The model was meant to match
the premia on RV and IV, so this represents an additional test of the proposed mechanism.

To be clear, the main contribution of the paper is not meant to be this model, but
nevertheless this section shows that the empirical results can be rationalized in a standard

structural asset pricing model.

Summary statistics from the model and empirical data, 1947-2018
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Model Data Model Data
Erp —ry 0.077 0.056 std (Ac) 0.0087 0.0052
std(rp, —rg) 014 0.11 skew; (Acipp)  -0.32 -0.15

% 053 052  skew(EAcyi) -0.10  -0.07
S T'm—'f'f

oL U B TR

Std[RW+1—PRV,t] ' .

E[RVer—Prva 19 (26

Std[R‘/t+1_PRV,t]
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Note:

Figure OA.1: Fit to realized volatility indexes
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Figure OA.2: Factor loadings
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Figure OA.3: rv and iv portfolio approximation errors
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Note:

Figure OA.4: Straddle and strangle returns
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Figure OA.5: Imposing a filter on volume
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Note: Same as figure 3, but using only options for which volume is neither zero nor missing.
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Figure OA.6: RV and IV portfolio Sharpe ratios and factor risk premia, one-week holding

period
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Note: Same as figure 3, but using one-week holding periods.
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Figure OA.7: RV and IV portfolio Sharpe ratios and factor risk premia (first half of the

sample)
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Note: Same as Figure 3, but only using the first half of the sample (up to June 2000).



Figure OA.8: RV and IV portfolio Sharpe ratios and factor risk premia (second half of the

sample)
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Note: Same as Figure 3, but only using the second half of the sample (after June 2000).
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Figure OA.10: RV and IV portfolio Sharpe ratios and factor risk premia (using 2-month IV)
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Note: Same as Figure 3, but using 2-month instead of 5-month IV.



Figure OA.11: RV and IV risk premia estimates with and without weighting
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Note: The figure reports risk premia for the factor model, unweighted (as in figure 3) or weighting each

observation by the implied volatility.
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Figure OA.12: SDF loadings on RV and IV (Sharpe ratios)
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Note: The figure reports the stochastic discount factor (SDF) loadings on IV and RV. The loadings are
scaled to correspond to Sharpe ratios of orthogonalized RV and IV portfolios, whose risk premia is equal

to the corresponding SDF loading.
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Figure OA.13: Bid-ask spreads on 8/4/2017
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Note: The figure reports posted bid-ask spreads for at-the-money straddles obtained from Bloomberg on

of August 4, 2017 (the CBOE S&P 500 spreads on that date are also obtained from Optionmetrics).



Figure OA.14: Volume across markets and maturities
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Figure OA.15: RV and IV portfolio Sharpe ratios and factor risk premia (robust to measure-

ment error)
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Note: Same as Figure 3, but returns are computed using the same denominator at all maturities, to

provide robustness with respect to measurement @}Qrgjgl the prices (see section OA.3.6).



Figure OA.16: Options on crude futures vs ETFs
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Note: Sharpe ratios on rv and iv portfolios using straddles for CME crude oil futures and the XLE and
USO exchange traded funds. “4-month” and “5-month” refers to the longer of the two maturities used to
construct each portfolio (the short maturity is always one month). The squares are point estimates based
on the full sample available for each series. The lines are 95-percent confidence bands constructed with a
50-day block bootstrap. "CME, USO adj.” and "CME, XLE adj.” are identical to the ?CME” numbers

but with the mean return in the denominator of the Sharpe ratio shifted by the point estimate for the
mean difference from table A.6.2.
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Table OA.1: x? test of the factor model

p-value
S&P 500 0.22
T-bonds 0.02
GBP 0.01
CHF 0.38
JPY 0.75
Copper 0.75
Corn 0.00
Crude oil 0.08
Feeder cattle 0.25
Gold 0.44
Heating oil 0.14
Lean hog 0.19
Live cattle 0.80
Natural gas 0.30
Silver 0.68
Soybeans 0.21
Soybean meal 0.41
Soybean oil 0.11
Wheat 0.29

Note: For each market, the table reports bootstrapped p-values for the x? of on the squared fitting errors
of the factor model (bootstrapped following Constantinides, Jackwerth, and Savov (2013).
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Table OA.2: Risk exposures of rv and v portfolios

rv portfolio iv portfolio
f £ AV R? f £ AV R? Corr(rv,iv)

S&P 500 -0.07 1.44 0.02 0.68 S&P 500 -0.16 1.37 0.96 0.75 0.48
T-bonds -0.01 0.81 -0.06 0.75 T-bonds -0.01 0.35 1.05 0.78 0.13
GBP -0.03 0.81 0.00 0.82 GBP -0.02 0.44 0.91 0.86 0.47
CHF 0.00 0.75 0.03 0.73 CHF 0.05 0.52 0.91 0.72 0.64
JPY -0.02 0.74 0.04 0.80 JPY 0.02 0.57 0.89 0.87 0.63
Copper -0.01 0.79 -0.06 0.62 Copper 0.01 0.23 1.00 0.85 0.07
Corn -0.02 0.65 -0.01 0.69 Corn 0.06 0.41 0.85 0.75 0.08
Crudeoil -0.03 1.00 -0.02 0.75 Crudeoil 0.03 -0.07 0.93 0.77 0.06
Feeder cattle -0.03 0.98 -0.01 0.66 Feeder cattle -0.02 -0.25 0.96 0.78 0.02
Gold 0.00 0.70 0.01 0.68 Gold 0.08 0.35 0.97 0.68 0.48
Heating oil -0.02 0.88 -0.04 0.76 Heating oil 0.04 -0.17 1.00 0.77 -0.02
Lean hog -0.02 090 -0.06 0.75 Lean hog 0.04 -0.49 1.03 0.64 -0.24
Live cattle -0.03 1.03 -0.03 0.72 Live cattle 0.00 -0.44 0.92 0.78 -0.12
Natural gas -0.03 0.87 -0.02 0.80 Natural gas 0.03 -0.38 0.98 0.64 -0.17
Silver -0.01 063 0.03 0.71 Silver 0.04 0.20 0.92 0.85 0.45
Soybeans -0.02 0.66 -0.01 0.71 Soybeans 0.04 0.30 0.89 0.80 0.18
Soybean meal -0.01 0.61 -0.02 0.74 Soybean meal 0.05 0.31 0.93 0.69 0.19
Soybean oil -0.01 0.64 -0.02 0.73 Soybean oil 0.05 0.29 0.94 0.77 0.20
Wheat -0.01 0.63 -0.05 0.78 Wheat 0.05 0.30 0.97 0.78 0.16
Average -0.02 0.82 -0.01 0.73 Average 0.02 0.20 0.95 0.76

Note: The table reports regression coefficients of the rv and iv portfolios for each market onto three
market-specific factors: the futures return, the squared futures return, and the change in IV. The column
on the right reports the correlation between the rv and iv portfolio returns.
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Table OA.3: Risk exposures of rv portfolio to IV innovations at different maturities

Maturity of IV shock

rv portfolio 1 2 3 4 5

S&P 500 0.08 0.08 0.07 0.05 0.02
T-bonds 0.07 0.06 0.03 0.00 -0.06
GBP 0.07 0.07 0.06 0.04 0.00
CHF 0.07 0.07 0.07 0.06 0.03
JPY 0.07 0.07 0.07 0.06 0.04
Copper 0.08 0.08 0.05 0.00 -0.06
Corn 0.08 0.08 0.07 0.05 -0.01
Crude oil 0.06 0.06 0.04 0.01 -0.02
Feeder cattle 0.09 0.08 0.06 0.03 -0.01
Gold 0.07 0.07 0.07 0.05 0.01
Heating oil 0.07 0.07 0.05 0.02 -0.04
Lean hog 0.09 0.08 0.06 0.01 -0.06
Live cattle 0.08 0.08 0.06 0.02 -0.03
Natural gas 0.08 0.08 0.07 0.03 -0.02
Silver 0.09 0.09 0.09 0.07 0.03
Soybeans 0.07 0.07 0.06 0.03 -0.01
Soybean meal 0.07 0.07 0.05 0.03 -0.02
Soybean oil 0.07 0.07 0.05 0.02 -0.02
Wheat 0.05 0.05 0.03 -0.01 -0.05

Maturity of IV shock

RV-hedging 1 2 3 4 5

S&P 500 0.05 0.04 0.04 0.02 0.00
T-bonds 0.11 0.11 0.10 0.07 0.00
GBP 0.08 0.08 0.07 0.05 0.00
CHF 0.07 0.07 0.06 0.04 0.00
JPY 0.07 0.07 0.06 0.04 0.00
Copper 0.13 0.13 0.12 0.07 0.00
Corn 0.12 0.12 0.12 0.08 0.00
Crude oil 0.07 0.07 0.06 0.03 0.00
Feeder cattle 0.09 0.09 0.07 0.04 0.00
Gold 0.10 0.10 0.08 0.05 0.00
Heating oil 0.09 0.09 0.08 0.06 0.00
Lean hog 0.11 0.11 0.10 0.06 0.00
Live cattle 0.09 0.09 0.07 0.04 0.00
Natural gas 0.10 0.10 0.09 0.06 0.00
Silver 0.12 0.12 0.11 0.07 0.00
Soybeans 0.11 0.11 0.09 0.06 0.00
Soybean meal 0.12 0.12 0.10 0.07 0.00
Soybean oil 0.12 0.12 0.11 0.07 0.00
Wheat 0.11 0.11 0.10 0.06 0.00

Note: The table reports the loading of the rv portfolio (top panel) and of the RV-hedging portfolio built
using the factor model (bottom panel) on shocks to IV of different maturity, from 1 to 5 months.
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Table OA.4: Risk exposures of rv and v portfolios, 2-month IV

rv portfolio iv portfolio
f £ AlV R2 f £ AlV R? Corr(rv,iv)

S&P 500 -0.04 0.74 0.04 0.38 S&P 500 -0.33 4.79 0.78 0.66 0.27
T-bonds 0.00 0.37 0.00 0.39 T-bonds -0.08 2.44 0.84 0.72 0.14
GBP -0.02 0.45 0.03 0.50 GBP -0.05 2.04 0.70 0.73 0.27
CHF 0.00 0.40 0.03 0.44 CHF 0.07 2.16 0.74 0.69 0.40
JPY -0.02 0.42 0.04 0.54 JPY -0.01 2.04 0.72 0.82 0.46
Copper -0.01 0.33 0.02 0.25 Copper 0.00 2.18 0.78 0.68 -0.04
Corn -0.02 0.27 0.03 0.32 Corn 0.10 2.17 0.64 0.72 0.07
Crude oil -0.01 0.58 0.01 0.50 Crude oil -0.06 1.72 0.77 0.71 0.19
Feeder cattle 0.00 0.45 0.04 0.36 Feeder cattle -0.21 2.07 0.77 0.58 0.05
Gold -0.01 0.28 0.02 0.35 Gold 0.09 2.21 0.84 0.66 0.23
Heating oil -0.02 0.54 0.01 0.49 Heating oil 0.04 1.31 0.80 0.62 0.09
Lean hog -0.01 0.45 0.03 0.45 Lean hog -0.01 1.59 0.74 0.59 0.08
Live cattle -0.02 0.53 0.02 0.47 Live cattle -0.06 1.75 0.75 0.68 0.18
Natural gas -0.03 0.50 0.02 0.55 Natural gas 0.03 1.28 0.77 0.67 0.18
Silver 0.00 0.28 0.04 0.41 Silver -0.01 1.70 0.79 0.76 0.30
Soybeans -0.02 0.38 0.03 0.50 Soybeans 0.05 1.52 0.69 0.77 0.29
Soybean meal -0.01 0.31 0.03 0.47 Soybean meal 0.07 1.60 0.66 0.75 0.26
Soybean oil -0.01 0.33 0.02 0.43 Soybean oil 0.07 1.63 0.73 0.72 0.20
Wheat -0.01 0.26 0.00 0.33 Wheat 0.07 2.16 0.70 0.79 0.14
Average -0.01 0.41 0.02 0.43 Average -0.01 2.02 0.75 0.70

Note: Same as table OA.2, but 2-month IV is used as one of the factors (as opposed to 5-month IV) and
in the construction of the rv and v portfolios.

OA.44



