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Abstract

We study an investor who is unsure of the dynamics of the economy. Not only are pa-

rameters unknown, but the investor does not even know what order model to estimate. She

estimates her consumption process nonparametrically – allowing potentially infinite-order dy-

namics – and prices assets using a pessimistic model that minimizes lifetime utility subject to

a constraint on statistical plausibility. The equilibrium is exactly solvable and we show that the

pricing model always includes long-run risks. With risk aversion of 4.7, the model matches

major facts about asset prices, consumption, and dividends. The paper provides a novel link

between ambiguity aversion and non-parametric estimation.
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1 Introduction

Economists do not agree on the dynamic properties of the economy. There has been a long debate

in the finance literature over how risky consumption growth is in the long-run (e.g. Bansal, Kiku,

and Yaron (2012) and Beeler and Campbell (2012)), and it is well known that long-run forecasting

is econometrically difficult (Müller and Watson (2013)). It is likely that the average investor is also

unsure of the true model driving the world. This paper studies the behavior of such an investor.

With exactly solved results, we show that a model in which investors have Epstein–Zin prefer-

ences and uncertainty about consumption dynamics generates high and volatile risk premia, excess

volatility in stock returns, a large degree of predictability in stock returns, low and stable interest

rates, and an estimated elasticity of intertemporal substitution from interest rate regressions of zero

as measured in Hall (1988) and Campbell and Mankiw (1989). Moreover, variation over time in

risk or model uncertainty is not required to generate predictability in returns.

We argue that investors consider a set of models of the economy that is only weakly con-

strained. People face pervasive ambiguity: no one can say they know the exact specification to

estimate when forecasting economic activity. So rather than just allowing uncertainty about the

parameters in a specific model, or putting positive probability on a handful of models, we treat

investors as considering an infinite-dimensional space of autoregressive moving average (ARMA)

specifications of unrestricted order. They therefore face a nonparametric problem in the sense that

the number of parameters to be estimated is potentially infinite.1

Infinite-dimensional estimation problems are well known to be difficult or impossible to ap-

proach with standard likelihood-based methods.2 But people must estimate some model. So,

following the literature on nonparametric time series estimation, we assume that in a finite sample,

they estimate a relatively small-scale model, which they view as an approximation to the truth. But

the true model may be infinite-dimensional. So investors face a highly non-standard estimation

problem, and, as Sims (1972) shows, the consequences for welfare of using a misspecified model

can be severe.

The uncertainty due to estimating consumption dynamics when the true model is unknown

and potentially of infinite order is clearly very different from that due to standard sources of risk,

such as future innovations to the consumption process; in many cases a valid posterior distribution

cannot be placed on the space of models. It is simply not always possible to be a Bayesian (in

particular, when the model order is unknown). It is reasonable to think that people view model

1This is a typical definition of nonparametric estimation – see, e.g., Chen (2007)
2Diaconis and Freedman (1986) note that Doob’s (1948) theorem on the consistency of Bayesian estimates only

applies to finite-dimensional parameter spaces. In infinite-dimensional settings, Bayesian estimators need not be

consistent for even apparently reasonable priors. Sims (1971, 1972) shows that it is generally impossible to create

accurate confidence intervals in such settings. See also Chow and Grenander (1985), Faust (1999), and Hansen and

Sargent (2007) (who note the links between Sims (1971), Diaconis and Freedman (1986), and robust control theory).
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uncertainty fundamentally differently from other sources of risk, in the sense of Knight (1921) and

Ellsberg (1961).

There are multiple potential ways of modeling attitudes towards such ambiguity. We draw

upon the insights of Gilboa and Schmeidler’s (1989) work on choice under ambiguity in modeling

people as making choices under a “worst-case” process for consumption that is chosen to minimize

lifetime utility.3 Such analysis is highly tractable, it is a plausible and parsimonious description of

how people might approach ambiguity, and it yields results that have a natural economic interpre-

tation because they point directly to the specific model that is most painful to agents.

Our headline theoretical result is that for an ambiguity-averse agent whose point estimate is that

consumption growth is white noise, the worst-case model used for decision-making, chosen from

the entire space of ARMA models, is an ARMA(1,1) with a highly persistent trend – literally the

homoskedastic version of Bansal and Yaron’s (2004) long-run risk model. More generally, what-

ever the investor’s point estimate, the worst-case model always adds a long-run risk component to

it.

The low-frequency fluctuations that people in our model fear die out at precisely the rate of time

preference. In a sense, then, they are shocks that effectively last the rest of the investor’s life. So

a way of interpreting our results is that they say that what people fear most, and what makes them

averse to investing in equities, is that growth rates or asset returns are going to be persistently lower

over the rest of their lives than they have been on average in the past. Our specific formulation of

model uncertainty allows us to formalize that intuition.

Our results are derived in the frequency domain, which allows strikingly clear conceptual and

analytical insights. Two factors determine the behavior of the worst-case model at each frequency:

estimation uncertainty and how utility is affected by fluctuations at that frequency. Growth under

the worst-case model has larger fluctuations at frequencies about which there is more uncertainty

or that are more painful. Quantitatively, we find that differences in estimation uncertainty across

frequencies are relatively small. Instead, since people with Epstein–Zin preferences are highly

averse to low-frequency fluctuations (for parameterizations such as ours where they prefer an early

resolution of uncertainty), persistent shocks play the largest role in robust decision-making.

A criticism of the long-run risk model has always been that it depends on a process for con-

sumption growth that is difficult to test for.4 We turn that idea on its head and argue that it is

the difficulty of testing for and rejecting long-run risk that actually makes it a sensible model for

investors to focus on. If anything, our result is more extreme than that of Bansal and Yaron (2004):

whereas they posit a consumption growth trend with shocks that have a half-life of 3 years, the

3Alternative models of ambiguity include Hansen and Sargent (2001), Epstein and Schneider (2003), Klibanoff,

Marinacci, and Mukerji (2005) and Maccheroni, Marinacci, and Rustichini (2006).
4See Beeler and Campbell (2012) and Marakani (2009).
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endogenous worst-case model that we derive features trend shocks with a half-life of 70 years.

In a calibration of the model, we show that it explains a wide range of features of financial

markets that have been previously viewed as puzzling. Similar to the intuition from Bansal and

Yaron (2004), equities earn high average returns in our model because low-frequency fluctuations

in consumption growth induce large movements in both marginal utility and equity prices. In our

setup, though, long-run risk need not actually exist – it only needs to be plausible.

The results that we obtain on excess volatility, forecasting, and interest rate regressions all

follow from the fact that the pricing model that our investor uses always involves more persistence

than her point estimate (i.e. the model used by an econometrician with access to the same data

sample as the investor). Since the pricing model has excess persistence, investors overextrapolate

recent news relative to what the point estimate would imply. Following positive shocks, then, stock

prices are relatively high and econometric forecasts of returns are low. We are thus able to generate

predictability without any changes in risk or risk aversion over time. Significantly, we obtain this

result in a model in which agents are rational, if uncertain. The lower case of the ‘r’ in rational here

is important. Agents behave as if optimizing under a “worst case” distribution that is different from

the true data generating process, putting us outside the standard Rational Expectations paradigm.

As discussed in Hansen and Sargent (2007), this is characteristic of models of ambiguity.

In generating all these results we have no more free parameters than other standard models

of consumption and asset prices. We link the parameter that determines how the agent penalizes

deviations from her point estimate for consumption dynamics directly to the coefficient of relative

risk aversion. There is thus a single free parameter that determines risk preferences, and it corre-

sponds to a coefficient of relative risk aversion of only 4.7. We also take no extreme liberties with

beliefs – the investor’s pricing model is essentially impossible to distinguish from the true model

in a 100-year sample. Using a correctly specified likelihood ratio test, the null hypothesis that the

pricing model is true is rejected at the five-percent level in, at most, only 6.8 percent of samples.

Our analysis directly builds on a number of important areas of research. First, the focus on a

single worst-case outcome is closely related to Gilboa and Schmeidler’s (1989) work on ambigu-

ity aversion that provides an axiomatic basis for decision making under a worst-case distribution

(though here we do not start from an axiomatic foundation). Second, we build on the analysis

of generalized recursive preferences to allow for the consideration of multiple models, especially

Hansen and Sargent (2010) and Ju and Miao (2012).5 The work of Hansen and Sargent (2010) is

5See, e.g., Kreps and Porteus (1978); Weil (1989); Epstein and Zin (1991); Maccheroni, Marinacci, and Rustichini

(2006); and Hansen and Sargent (2005), among many others. There is also a large recent literature in finance that

specializes models of ambiguity aversion to answer particularly interesting economic questions, such as Liu Pan and

Wang (2004) and Drechsler’s (2013) work with tail risk and the work of Uppal and Wang (2003), Maenhout (2004),

Sbuelz and Trojani (2008), and Routledge and Zin (2009) on portfolio choice. Recent papers on asset pricing with

learning and ambiguity aversion include Veronesi (2000), Brennan and Xia (2001), Epstein and Schneider (2007),

Cogley and Sargent (2008), Leippold, Trojani, and Vanini (2008), Ju and Miao (2012), and Collin-Dufresne, and
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perhaps most comparable to ours, in that they study an investor who puts positive probability on

both a white-noise model and a parameterized long-run risk model for consumption growth. The

key difference here is that we consider a nonparametric setting in which the agent considers all

ARMA models, instead of only two. The emergence of the long-run risk model as the one that she

focuses on is entirely endogenous.6 We also obtain analytic results that provide economic insights

into precisely what model is most painful to agents, whereas Hansen and Sargent’s (2010) analysis

is numerically solved.

Since the worst-case model is more persistent than the point estimate, pricing behavior is sim-

ilar to the extrapolation implied by the “natural expectations” studied by Fuster, Hebert, and Laib-

son (2011). Our results differ from theirs, though, in that we always obtain excess extrapolation,

whereas in their setting it results from the interaction of suboptimal estimation on the part of

investors with a specific data-generating process. Cecchetti, Lam, and Mark (2000) examine a

setting in which investors use a rule-of-thumb estimation technique and are subject to random be-

lief shocks to obtain excess volatility and predictability. In our analysis, there is no assumption

that the estimation method is suboptimal, and excess volatility and predictability are natural con-

sequences of the pessimistic model that agents choose. Our paper complements the literature on

belief distortions and extrapolative expectations by deriving them as a natural response to model

uncertainty.7

The remainder of the paper is organized as follows. Section 2 discusses the agent’s estimation

method. Section 3 describes the basic structure of the agent’s preferences, and section 4 then

derives the worst-case model. We examine asset prices in general under the preferences in section

5. Section 6 then discusses the calibration and section 7 analyzes the quantitative implications of

the model. Section 8 concludes.

2 Measuring model plausibility

We begin by describing the set of possible models that investors consider and the estimation method

they use to measure the relative plausibility of different models.

2.1 Economic environment

We study a pure endowment economy.

Lochstoer (2013).
6Bidder and Smith (2015) also develop a model in which the worst-case process of an agent with multiplier pref-

erences also features extra peristence that arises from the interaction of ambiguity aversion and stochastic volatility.
7See also Barsky and Delong (1993), Abel (2002), Brandt, Zheng, and Zhang (2004), and Hirshleifer and Yu

(2013).
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Assumption 1. Investors form expectations for future log consumption growth, ∆c, using

models of the form

∆ct = µ+ a (L) (∆ct−1 − µ) + εt (1)

εt ∼ N
(
0, σ2

)
(2)

where µ is mean consumption growth, a (L) is a power series in L, the lag operator, with roots

inside the unit circle, and εt is an innovation.

The change in log consumption on date t, ∆ct, is a function of past consumption growth and

a shock. We restrict our attention to models with purely linear feedback from past to current con-

sumption growth. It seems reasonable to assume that people use linear models for forecasting,

even if consumption dynamics are not truly linear, given that the economics literature focuses al-

most exclusively on linear models. For our purposes, the restriction to the class of linear processes

is a description of the agent’s modeling method, rather than an assumption about the true process

driving consumption growth. We make the further assumption that εt is i.i.d. normal. While the

assumption of normality is not necessary, it simplifies the exposition; the key assumption is that εt

is serially independent.8

In much of what follows, it will be more convenient to work with the moving average (MA)

representation of the consumption process (1),

∆ct = µ+ b (L) εt (3)

where b (L) ≡ (1− La (L))−1
(4)

= 1 +
∞∑
j=1

bjL
j (5)

We can thus express the dynamics of consumption equivalently as depending on a or just on the

power series b (L), with coefficients bj .
9 The two different representations are each more conve-

nient than the other in certain settings, so we will refer to both in what follows. They are directly

linked to each other through equation (4), so that a particular choice of a is always associated with

a distinct value of b and vice versa (as long as b is invertible, which we impose).

There are no latent state variables. When a model a (L) has infinite order we assume that

the agent knows all the necessary lagged values of consumption growth for forecasting (or has

8It is straightforward to solve the model when εt has an arbitrary distribution but remains serially independent.

While time varying volatility in innovations is an important area of analysis (e.g. Drechsler and Yaron (2011)) we

avoid it here for simplicity.
9In working with finite order regressive or moving average representations, a and b can be regarded as polynomials.

When, as will be necessary below, we deal with potentially infinite order representations, we continue to use the term

polynomial for ease of expression, though in that case b (L) and a (L) are, formally, power series.

6



dogmatic beliefs about them) so that no filtering is required. We discuss necessary constraints on

the models below. For now simply assume that they are sufficiently constrained that any quantities

we derive exist.

We set the notation Θ ≡ {b, µ, σ2} to represent the set of parameters that defines a model of

consumption growth. Note that Θ induces a joint Gaussian density over sequences of consumption

growth realizations.

2.2 Model distance

For the purpose of forecasting consumption growth, the agent in our model chooses among spec-

ifications for consumption growth, Θ, partly based on their statistical plausibility. As is common

in the literature, the plausibility of a model, or its distance from the agent’s point estimate, is mea-

sured by the Kullback–Leibler divergence, or relative entropy, which is the expected value of a log

likelihood ratio statistic comparing a pair of models.10

We denote the divergence between two models by g
(
Θ; Θ̄

)
, where Θ̄ is the benchmark or

point estimate, and Θ is some alternative model. Suppose the agent has a point estimate Θ̄ and she

compares it to an alternative model Θ based on their relative log likelihoods. Then as the number

of observations grows to infinity, g
(
Θ; Θ̄

)
is the limit of the expectation of that likelihood ratio

statistic if the data is generated by the model Θ. The likelihood ratio is a natural choice to measure

the difference between a pair of models because the Neyman–Pearson lemma shows that such a

test is the most powerful way to discriminate between a pair of models.

Any sample of observed consumption growth of length T from the model (3) has a multivariate

normal distribution with mean µ and a covariance matrix determined by {b, σ}, denoted ΣΘ,T . The

log likelihood for a sample of length T is then

LLT (Θ) = −1

2
log |ΣΘ,T | −

1

2
(∆c1,...,T − µ)′Σ−1

Θ,T (∆c1,...,T − µ) (6)

where ∆c1,...,T denotes a column vector containing the sample of observed consumption growth

between dates 1 and T .

Our analysis of the model takes place in the frequency domain because it will allow us to obtain

a tractable and interpretable solution. The analysis centers on the transfer function,

B (ω) ≡ b
(
eiω
)

(7)

for i ≡
√
−1. The transfer function measures how the filter b (L) transfers power at each frequency,

10See Hansen and Sargent (2001), Maccheroni, Marinacci, and Rusticini (2006), Sbuelz and Trojani (2008), Strza-

lecki (2011), Drechsler (2013), among others.
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ω, from the white-noise innovations, ε, to consumption growth.

Now suppose consumption growth is generated by the model Θ. One may show that as T →∞,

the expected difference between the log likelihoods for the models Θ and Θ̄ converges to

lim
T→∞

T−1EΘ

[
LLT

(
Θ̄
)
− LLT (Θ)

]
= −1

2

σ2

σ̄2

∫ ∣∣B (ω)− B̄ (ω)
∣∣2∣∣B̄ (ω)

∣∣2 dω

−1

2

(µ− µ̄)2

σ̄2
∣∣B̄ (0)

∣∣2 +
1

2

(
log

(
σ2

σ̄2

)
− σ2 − σ̄2

σ̄2

)
(8)

(where |·| denotes the norm of a complex number, the notation EΘ indicates an unconditional

expectation taken over the probability measure induced by Θ, and the integral sign with no limits

denotes 1
2π

∫ π
−π). This result is a simple application of Whittle’s (1953) limiting formula for the log

likelihood (see, e.g., Dahlhaus (1996)).

The relative entropy between Θ and Θ̄ depends on three terms. The first measures the difference

between the dynamics (in terms of autocorrelations) implied by the two models. A simple way to

interpret it is that
∣∣B̄ (ω)

∣∣2 measures the uncertainty about the size of fluctuations at frequency ω,

so the entropy distance penalizes squared deviations between the models,
∣∣B (ω)− B̄ (ω)

∣∣2, less

strongly at frequencies at which there is more uncertainty. This is the major term that will drive

our results – it determines how the agent quantifies deviations of dynamics from the benchmark.

The second term incorporates the differences in the means of the distributions under the two

models. We obtain the typical result that the uncertainty about the mean depends on the spectrum at

frequency zero.11 In other words, deviations in the mean of consumption growth between the two

models are penalized with a similar scaling to deviations in the dynamics, but they are essentially

infinitely low frequency differences – i.e. infinitely long lived shocks to consumption growth – so

they are scaled by σ̄2
∣∣B̄ (0)

∣∣2.

Finally, there is a contribution from the deviation of the innovation variance, σ2, from the

benchmark, which we find to have quantitatively minimal effects in our calibration.

As a divergence measure, (8) is precisely the limit of the Kullback–Leibler (KL) divergence

between the models Θ and Θ̄ – the relative entropy between the joint distributions for consumption

growth implied by Θ and Θ̄ as the sample length grows to infinity. We therefore define the agent’s

measure of model plausibility in the following assumption:

Assumption 2. Given a point estimate Θ̄, investors measure the statistical plausibility of an

11f̄ (ω) ≡ σ̄2 |B (ω)|2 is the spectral density (or spectrum) of consumption growth under the model Θ̄. The

spectral density decomposes the total variance of a time series into components coming from fluctuations at different

frequencies.
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alternative model Θ through the divergence measure,

g
(
Θ; Θ̄

)
≡ 1

2

σ2

σ̄2

∫ ∣∣B (ω)− B̄ (ω)
∣∣2∣∣B̄ (ω)

∣∣2 dω

+
1

2

(µ− µ̄)2

σ̄2
∣∣B̄ (0)

∣∣2 − 1

2

(
log

(
σ2

σ̄2

)
− σ2 − σ̄2

σ̄2

)
(9)

While the KL divergence is widely studied and has a prominent place in the ambiguity litera-

ture, one could ask how an investor, in reality, might adopt such a measure of statistical discrimina-

tion. Is it reasonable to think that an investor armed with a simple estimation toolkit would behave

as if she were using this distance measure?

As noted above, it is the first term in the definition of g
(
Θ; Θ̄

)
that drives our results. That

component also arises if the investor uses the nonparametric estimation methods for AR and MA

models described by Berk (1984) and Brockwell and Davis (1988). Specifically, one may model

agents as estimating AR or MA models whose lag orders grow with the sample size. They thus

have nonparametric confidence intervals. We show in the online appendix that if they follow such

an estimation process, then as the sample size grows, a Wald test of the difference in the MA

coefficients between the point estimate and any alternative approaches 1
2π

∫ 2π

−2π

|B(ω)−B̄(ω)|2

|B̄(ω)|2 dω. So

the key part of the KL divergence that addresses dynamics may also be derived from an explicit

nonparametric estimation method.12

3 Preferences

Given a particular model of consumption dynamics, the agent has Epstein–Zin (1991) preferences.

We augment those preferences with a desire for a robustness against alternative models. The

desire for robustness induces the agent to form expectations, and hence calculate utility and asset

prices, under a pessimistic but plausible model, where plausibility is quantified using the estimation

approach described above.

3.1 Utility given a model

Assumption 3. Given a forecasting model Θ ≡ {b, µ, σ2}, the investor’s utility is described by

Epstein–Zin (1991) preferences. The coefficient of relative risk aversion is α, the time discount

parameter is β, and the elasticity of intertemporal substitution (EIS) is equal to 1. Lifetime utility,

12Intuitively, this result is related to the fact that Wald and likelihood ratio tests are asymptotically equivalent. We

thank Lars Hansen for pointing out the connection between the method based on the Wald test – which is how we

originally derived our results – and the KL divergence.
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v, for a fixed model Θ, is

v
(
∆ct; Θ

)
= (1− β) ct +

β

1− α logEt
[
exp

(
v
(
∆ct+1; Θ

)
(1− α)

)
|Θ
]

(10)

= ct +

∞∑
k=1

βkEt [∆ct+k|Θ] +
β

1− β
1− α

2
σ2b (β)2

(11)

where Et [·|Θ] denotes the expectation operator conditional on the history of consumption growth

up to date t, ∆ct, assuming that consumption is driven by the model Θ.
β

1−β
1−α

2
σ2b (β)2

is an adjustment to utility for risk. The investor’s utility is lower when risk

aversion or the riskiness of the endowment is higher. The relevant measure of the risk of the

endowment is σ2b (β)2
, which measures the variance of the shocks to lifetime utility in each period.

b (β) measures the total discounted effect of a unit innovation to εt+1 on consumption growth, and

hence utility, in the future. It is the term involving b (β) that causes people with Epstein–Zin

preferences to be averse to long-run risk.13 b (β) can be written in terms of the transfer function as

b (β) =

∫
Z (ω)∗B (ω) dω (12)

where Z (ω) ≡
∞∑
j=0

βjeiωj (13)

and ∗ denotes a complex conjugate. The parameter µ enters through the discounted expectation of

future consumption growth, and hence appears as β
1−βµ.

3.2 Robustness over dynamics

Equation (11) gives lifetime utility conditional on consumption dynamics. We now discuss the

investor’s consideration of alternative models of dynamics.

The investor entertains a set of possible values for Θ and can associate with any model a

measure of its plausibility, g (from assumption 2). Seeking robustness, the investor makes decisions

that are optimal in an unfavorable world – specifically, as though consumption growth is driven

by worst-case dynamics, denoted Θw ≡ {bw, σ2
w, µ

w}. These dynamics are not the worst in an

unrestricted sense but, rather, are the worst among statistically plausible models. So the investor

does not fear completely arbitrary models – she focuses on models that are not too far from her

point estimate in terms of KL distance (expected log likelihood).

13We focus on the case of a unit EIS to ensure that we can derive analytic results. The precise behavior of interest

rates is not our primary concern, so a unit EIS is not particularly restrictive. The unit EIS also allows us to retain the

result that Epstein–Zin preferences are observationally equivalent to a robust control model, as in Barillas, Hansen,

and Sargent (2009), which will be helpful in our calibration below

10



Assumption 4. Investors use a worst-case model to form expectations – for both calculating

utility and pricing assets – that is obtained as the solution to a penalized minimization problem:

Θw = arg min
Θ

{
E
[
v
(
∆ct; b, σ2, µ

)
|Θ
]

+ λg
(
Θ; Θ̄

)}
(14)

{bw, σ2
w, µ

w} is the model that gives the agent the lowest unconditional expected lifetime utility,

subject to the penalty g.14 λ is a parameter that determines how much weight the penalty receives.

As usual, λ can either be interpreted directly as a parameter or as a Lagrange multiplier on a

constraint on the KL divergence g. The KL divergence can be large for three reasons: deviations

in the dynamics, b; deviations in the mean, µ; and deviations in the conditional variance, σ2.

The agent’s assessment of plausibility is based on our statistical measure of distance and con-

trolled by λ. We are modeling the agent’s beliefs about potential models by assuming that she

compares possible models to a point estimate Θ̄. The role of g in our analysis is similar to that

of the KL divergence used in the robust control model of Hansen and Sargent (2001), in that it

imposes discipline on what models the investor considers.

There are three important differences between our analysis and the multiplier preferences of

Hansen and Sargent (2001). First, in Hansen and Sargent’s (2001) model, the deviation between

the worst-case model and the benchmark is purely in the distribution of innovations, εt+1. Here

we explicitly focus on uncertainty about dynamics. As we showed above, shifts in the mean of the

distribution of εt+1 (as obtained in Barillas, Hansen, and Sargent (2009)) represent deviations in the

model only at frequency zero. Our nonparametric analysis allows for deviations at all frequencies.

The allowance of models with alternative dynamics is central to our results – it is what generates

predictability in returns and excess volatility in asset prices.

Second, Hansen and Sargent (2001) model agents as having log utility over fixed models, while

we start from the assumption that agents have Epstein–Zin (1991) preferences over fixed models.

Because Epstein–Zin preferences imply that the timing of resolution of uncertainty affects utility,

our agents view more persistent processes as less favorable (for α > 1).

Finally, under multiplier preferences, the state variables in the worst-case model are the same

as the state variables in the benchmark model. So, for example, if consumption growth is an

AR(1) under the benchmark model, then lagged consumption growth is also the only state variable

under the worst-case model. In our setting, though, the state variables in the worst-case model

are typically different from those under the benchmark (and in general in fact include the entire

history of consumption growth). Our setting thus allows agents to consider potentially infinitely

richer economic dynamics.

14Since consumption can be non-stationary, this expectation does not always exist. In that case, we simply rescale

lifetime utility by the level of consumption yielding E [v (∆ct; b)− ct|Θ], which does exist. Scaling by consumption

is a normalization that has no effect other than to ensure the expectation exists.
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A natural question is why we analyze a worst case instead of allowing the agent to average as a

Bayesian across all the possible models. Our answer is that people may not actually be Bayesians,

or they may not be able to assign priors to all models. Machina and Siniscalchi (2014) discuss the

extensive experimental evidence that people make choices consistent with ambiguity aversion.

Ambiguity aversion is particularly compelling in our context because, as we will see, it is ul-

timately dynamics at the very lowest frequencies that drive our results. And direct estimation of,

say, 50- or 100-year autocorrelations is, for practical purposes with realistic data sources, impos-

sible. So investors face a situation where they simply do not have data that directly measures all

features of consumption dynamics. They do not face a standard estimation problem – rather, they

must make decisions in the face of model uncertainty that cannot be resolved by the data at hand,

a problem akin to that discussed by Knight (1921) and Ellsberg (1961). Moreover, as Hansen and

Sargent (2007) note, almost any model is necessarily just an approximation, even a high-order one.

If the true model has infinite order, then it can never be fully characterized in any finite sample.

Finally, (again, following Hansen and Sargent (2007)), it is well understood that when the

parameter space is infinite, likelihood-based methods are difficult to implement at best, and often

impossible. Specifically, frequentist methods with an infinite-dimensional parameter space lead to

degenerate estimates (in the context of spectral estimation, for example, see Chow and Grenander

(1985)), while constructing priors over such a space that lead to accurate posterior confidence

intervals is difficult or impossible (Sims (1971) and Diaconis and Freedman (1986)). So when

an investor does not know the true order of the model driving the endowment process, she may

literally not be able to assign likelihoods to different specifications. Instead, she uses g
(
Θ; Θ̄

)
to measure the “plausibility” of potential models, even though she has no probabilities on models

over which to integrate.

Ultimately, our ambiguity-averse investor’s utility takes the form of that of an Epstein–Zin

agent but using Θw to form expectations about future consumption growth,15

vw
(
∆ct
)

= v
(
∆ct; Θw

)
= ct +

β

1− β
1− α

2
σ2
wb

w (β)2 +
∞∑
k=1

βkEt [∆ct+k|Θw] (15)

In modeling investors as choosing a single worst-case Θw, we obtain a setup similar to Gilboa

and Schmeidler (1989), Maccheroni, Marinacci, and Rustichini (2006), and Epstein and Schneider

(2007) in the limited sense that we are essentially constructing a set of models and minimizing

over that set. Our worst-case model is, however, chosen once and for all and is not state- or choice-

dependent. The choice of Θw is timeless – it is invariant to the time-series evolution of consumption

15Note that since utility is recursive, the agent’s preferences are time-consistent, but under a pessimistic probability

measure. Furthermore, the assumption that bw is chosen unconditionally means that bw is essentially unaffected by

the length of a time period, so the finding in Skiadas (2013) that certain types of ambiguity aversion become irrelevant

in continuous time does not apply here.
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– so what it represents is an unconditional worst-case model: if an agent had to choose a worst-case

model to experience prior to being born into the world, it would be Θw. The worst-case analysis

is certainly not the only way to model behavior under ambiguity, but it is plausible and generates

economically interpretable results.

Unlike in some recent related papers, the investor in this model does not change her probability

weights every day or adjust the worst case according to a learning process.16 She chooses a single

pessimistic model to protect against. An added benefit of the assumption that the worst-case model

is chosen timelessly is that it ensures time-consistency. The agent sets the model used for forming

expectations once and for all, and then uses a recursive utility specification conditional on that

single probability measure. In other words, since the model is chosen a single time, our agent’s

preferences inherit the time-consistency of Epstein–Zin preferences.

4 The worst-case scenario

Our analysis above leads us to a simple quadratic optimization problem. The solution is summa-

rized in the following proposition.

Proposition 1 Under assumptions 1–4, for an agent who chooses a model Θw ≡ {bw, µw, σ2
w} to

minimize the unconditional expectation of lifetime utility subject to the loss function g
(
Θ; Θ̄

)
, that

is,

Θw = arg min
Θ

β

1− β
1− α

2
σ2b (β)2 +

β

1− βµ+ λg
(
Θ; Θ̄

)
(16)

the worst-case model is determined by the set of equations

Dynamics: σ2
w |Bw (ω)|2 = f̄ (ω) (17)

+λ−1β (1 + β) (α− 1)σ2
wb

w (β)2 f̄ (ω) |Z (ω)|2 (18)

Mean: µw = µ̄− λ−1 β

1− β f̄ (0) (19)

where B (ω) = b (eiω), Z (ω) ≡
∑∞

j=0 β
jeiωj , σ2

w |Bw (ω)|2 is the spectrum under the worst-case

model, and f̄ is the benchmark spectrum. The time-domain model bw (L) has coefficients bwj that

are obtained as the Wold representation associated with |Bw (ω)|2 (see Priestley (1981) section

10.1.1).

We thus have a closed form expression for the worst-case model. The spectral density under the

worst case, fw (ω) = σ2
w |Bw (ω)|2, in (17) is equal to the point estimate plus a term that depends

16See, for example, Hansen and Sargent (2010), Ju and Miao (2012), and Collin-Dufresne, Johannes, and Lochstoer

(2015).
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Figure 1 about here.

on three factors. First, λ−1β (1 + β) (α− 1)σwb
w (β) represents the ratio of the utility losses from

a marginal increase in σwb
w (β) to the cost of deviations from the point estimate, λ. When risk

aversion, α, is higher or the cost of deviating from the point estimate, λ, is lower, the worst-case

model is farther from the point estimate.

Second, f̄ (ω) represents the amount of uncertainty the agent has about consumption dynamics

at frequency ω. Where the spectral density, f̄ (ω), is high, there is relatively more uncertainty and

the worst-case model is farther from the point estimate.

Finally, |Z (ω)|2 determines how much weight the lifetime utility function places on frequency

ω. The top panel of figure 1 plots |Z (ω)|2 for β = 0.99 , a standard annual calibration. It is strik-

ingly peaked near frequency zero; in fact, the x-axis does not even show frequencies corresponding

to cycles lasting less than 10 years because they carry essentially zero weight. Since the mass of

|Z (ω)|2 lies very close to frequency 0, the worst case shifts power to very low frequencies. In that

sense, the worst-case model always includes long-run risk.

The mean of consumption growth also differs from the benchmark in a natural way: when

people are willing to consider more extreme models, they are more risk averse, or they have more

uncertainty about the mean (through f̄ (0)), µw is farther below µ.

When α = 1, so that the investor’s preferences reduce to time-separable log utility, the shift in

the dynamics is set to zero: fw (ω) = f̄ (ω). That is because under time separable preferences, the

dynamics of consumption do not affect average utility. But the mean growth rate obviously still

matters, so even for α = 1, µw < µ̄.

Finally, people in principle also consider deviations of σ2
w from the point estimate σ̄2. We find

below that this effect is extremely small in a typical calibration.

An important feature of the results is that the worst-case model depends on preferences. In

particular, when β is higher – the investor is more patient – the worst-case model is more persistent.

At the same time, when the investor is more risk averse – α is higher – the amount of long-run risk

in the worst-case model is higher. The model thus has implications for disagreement across agents

that is tightly linked to preferences or investment horizons.

Proposition 1 represents the completion of the solution to the model. To summarize, given a

point estimate, Θ̄ (estimated from a finite-order model that we need not specify here), the agent

selects a worst-case model Θw. She then uses the worst-case model when calculating expectations

and pricing assets.
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4.1 Long-run risk is the worst-case scenario

Corollary 2 Suppose the agent’s point estimate is that consumption growth is white noise, with

b̄ (L) = 1. The worst-case model is then an ARMA(1,1), and consumption growth has the following

representation under the worst-case dynamics,

∆ct = (1− β)µw + β∆ct−1 + εt − θεt−1 (20)

εt ∼ N
(
0, σ2

w

)
(21)

The above ARMA(1,1) process also has an equivalent state-space representation,

∆ct = µw + xt−1 + ηt (22)

xt = βxt−1 + vt (23)

where

ηt ∼ N
(
0, σ̄2

)
and νt ∼ N

(
0, σ̄2ϕ

)
(24)

ϕ ≡ λ−1β (1 + β) (α− 1) bw (β)2 σ2
w (25)

The state-space form in equations (22–23) is observationally equivalent to the process (20–21) in

the sense that they have identical autocovariances for consumption growth, and (22–23) is exactly

case I from Bansal and Yaron (2004), the homoskedastic long-run risk model.

The worst-case process exhibits a small but highly persistent trend component, and the per-

sistence is exactly equal to the time discount factor. Intuitively, since βj determines how much

weight in lifetime utility is placed on consumption j periods in the future, a shock that decays with

β spreads its effects as evenly as possible across future dates, scaled by their weight in utility. And

spreading out the effects of the shock over time minimizes its detectability. The worst-case/long-

run risk model is thus the departure from pure white noise that generates the largest increase in risk

prices (and decrease in lifetime utility) for a given level of statistical distinguishability.17

There is a difference between the worst-case model derived here and the long-run risk model,

which is that in this setting, the long-run trend, xt, is unobservable. Asset prices therefore carry

no ability to forecast future consumption growth beyond what is available in the history of lagged

consumption. However, one may show that the volatility of the pricing kernel, and hence the price

17This exact balance results from the quadratic nature of the minimization problem. All the lag coefficients bj
contribute to the KL divergence symmetrically, but their effects on utility decline with βj , which yields our result.

Specifically, the contribution of dynamics to lifetime utility is proportional to bw (β)
2
, and d

dbj
b (β)

2 ∝ βj . Similarly

the contribution to the KL divergence from the {bj} is
∑∞
j=1 b

2
j , so

dg(Θ;Θ̄)
dbj

∝ bj . So we end up with the result that

bj ∝ βj .
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of risk, is actually higher under the process (20–21) than under (22–23) (due to the later arrival of

information). The key intuition behind the long-run risk model is that a small persistent component

in consumption growth can induce large fluctuations in the pricing kernel, and that force (or fear

of it) is also present in our model.

The composite parameter ϕ determines the degree to which the worst-case dynamics differ

from the point estimate and also the volatility of the trend shock ν. When the worst-case model

differs from the benchmark by a greater degree, the worst-case model displays more volatile trend-

type shocks, νt, and the white-noise shocks, ηt, become relatively smaller.

The bottom panel of figure 1 plots the spectrum for the white-noise benchmark and the worst-

case model. The spectrum for white noise is totally flat, while the worst case has substantial power

at the very lowest frequencies, exactly as we would expect from the top panel of figure 1.

Hansen and Sargent (2010) also study a setting in which investors price assets as though the

long-run risk model might be driving the consumption process. The key difference between their

analysis and ours, though, is that they start from the assumption that agents put a non-zero proba-

bility on possibility that the long-run risk model is actually true. We, on the other hand, start from

a simple white-noise benchmark and obtain the long-run risk model entirely endogenously.

5 The behavior of asset prices

The investor’s Euler equation is calculated under the worst-case dynamics. For any available return

Rt+1,

1 = Et [Rt+1Mt+1|Θw] (26)

where Mt+1 ≡ β exp (−∆ct+1)
exp (v (∆ct+1; Θw)× (1− α))

Et [exp (v (∆ct+1; Θw)× (1− α)) |Θw]
(27)

Mt+1 is the stochastic discount factor (SDF). The SDF is identical to what is obtained under

Epstein–Zin preferences, except that here expectations are calculated under Θw. The key im-

plication of that change is that expected shocks to v (∆ct+1; Θw) have a larger standard deviation

since the worst-case model features highly persistent shocks that affect lifetime utility much more

strongly than the less persistent point estimate.

5.1 Consumption and dividend claims

It is straightforward, given that log consumption follows a linear Gaussian process, to derive ap-

proximate expressions for prices and returns on levered consumption claims. We consider an asset

whose dividend is Cγ
t in every period, where γ represents leverage. Denote the return on that asset
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on date t + 1 as rt+1 and the real risk-free rate as rf,t+1. We will often refer to the levered con-

sumption claim as an equity claim, and we view it as a simple way to model equity returns (Abel

(1999)).18

From the perspective of an econometrician who has the same point estimate for consumption

dynamics as the investor, Θ̄, the expected excess log return on the levered consumption claim is

Et
[
rt+1 − rf,t+1|Θ̄

]
+

1

2
vart (rt+1) = −covw (rt+1,mt+1) +

1

2
(vart (rt+1)− varwt (rt+1))

+
γ − δaw (δ)

1− δaw (δ)

[
(1− aw (1)) (µ− µw) +

(ā (L)− aw (L)) (∆ct − µ)

]
(28)

where δ is a linearization parameter from the Campbell–Shiller approximation that depends on the

steady-state price/dividend ratio. The addition of the variance is a correction to make the left-hand

side approximately the arithmetic mean return.

The first term, −1
2
covwt (rt+1, logMt+1) (i.e. the conditional covariance of log returns with

the log SDF measured under the worst-case dynamics), is the standard risk premium, and it is

calculated under the worst-case model. The primary way that the model increases risk premia

compared to standard Epstein–Zin preferences is that the covariance of the return with the SDF is

more negative. That covariance, in turn, is more negative for two reasons. First, since the agent

behaves as though shocks to consumption growth are highly persistent, they have large effects on

lifetime utility, thus making the SDF very volatile. Second, again because of the persistence of

consumption growth under the worst case, shocks to consumption have large effects on expected

long-run dividend growth, so the return on the levered consumption claim is also very sensitive to

shocks.19 These two effects cause the consumption claim to strongly negatively covary with the

SDF and generate a high risk premium.

The second term is a quantitatively trivial (under our benchmark calibration) adjustment to the

arithmetic mean due to the difference between the variance of returns under the benchmark and

worst-case models.

The second line is the part of the expected return that comes from differences in forecasts

of consumption under the models of the econometrician and investors. As long as γ > δaw (δ)

(which is always satisfied if γ > 1), the coefficients on (µ− µw) and (ā (L)− aw (L)) (∆ct − µ)

18The model of dividends here is very simplistic and does not match the dynamics of dividend growth particularly

well. The online appendix examines a more realistic model of dividends that matches the standard deviation of

dividend growth and the correlation between dividend and consumption growth in a setting in which dividends and

consumption are cointegrated. The behavior of equity returns is almost identical in that setting to what we obtain with

the simple model Dt = Cγt .
19We have covw (rt+1,mt+1) = (−1 + (1− α) bw (β)) γ−δa

w(δ)
1−δaw(δ)σ

2
w. The volatility of the SDF is determined by

(−1 + (1− α) bw (β))σw, while the volatility of the return is
γ−δaw(δ)
1−δaw(δ)σw.
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are positive. The former term implies that average equity returns are higher when investors are

more pessimistic about mean consumption (and hence dividend) growth, µw.

The term involving (∆ct − µ) is zero on average, but it induces predictability in returns. When

the worst case implies higher future consumption growth, investors pay relatively more for eq-

uity compared to riskless assets, thus lowering expected excess returns. This channel leads to

procyclical asset prices and countercyclical expected returns when aw (L) implies more persistent

dynamics than ā (L), similarly to Fuster, Hebert, and Laibson (2011).

The procyclicality of asset prices also depends on leverage, γ. Expected returns for assets more

risky than consumption (γ > 1) are countercyclical, and we model equity as having γ > 1. But

for assets safer than consumption, prices will in fact be countercyclical, because variation in the

risk-free rate dominates variation in the risk premium for them.

We also note that since risk aversion and conditional variances are constant, the excess return

on a levered consumption claim has a constant conditional expectation from the perspective of in-

vestors. That is, while returns are predictable from the perspective of an econometrician, investors

believe that they are unpredictable. So if investors in this model are surveyed about their expec-

tations of excess returns, their expectations will not vary, even if econometric evidence implies

that returns are predictable. This model therefore generates extrapolative expectations of the type

discussed by Greenwood and Shleifer (2014) (and many references therein), but that extrapolation

applies to consumption growth rather than equity returns.

Finally, it is worth noting that since asset prices depend purely on the history of consumption

growth, there is no way to improve to the investor’s estimates of consumption dynamics by includ-

ing information on asset prices. The price of a consumption claim is completely redundant given

data on the history of consumption.

5.2 Interest rates

The risk-free rate follows

rf,t+1 = − log β + µw + aw (L) (∆ct − µw)− 1

2
σ2
w + (1− α) bw (β)σ2

w (29)

With a unit EIS, interest rates move one for one with expected consumption growth. In the present

model, the relevant measure of expected consumption growth is µw +aw (L) (∆ct − µw), which is

the expectation under the worst-case model.

The online appendix derives analytic expressions for the prices of long-term zero-coupon

bonds, which we discuss in our calibration below.
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6 Calibration

We now parameterize the model to analyze its quantitative implications. Most of our analysis is

under the assumption that the agent’s point estimate implies that consumption growth is white

noise and that the point estimate is also the true dynamic model. Despite this parsimony, we obtain

striking empirical success in terms of matching important asset pricing moments.

Many of the required parameters are standard. We use a quarterly calibration of β = 0.991/4,

implying a pure rate of time preference of 1 percent per year. Setting β smaller would imply that

the worst-case model is less persistent, but it also implies that interest rates are higher. We will see

below that the equilibrium real interest rate in the model ends up being still too large relative to the

data, which implies that β should not be lower.

The steady-state dividend/price ratio used in the Campbell–Shiller approximation is 5 percent

per year, as in Campbell and Vuolteenaho (2004), so δ = 0.951/4.20 Other parameters are cali-

brated to match moments reported in Bansal and Yaron (2004). The agent’s point estimate is that

consumption growth is i.i.d. with a quarterly standard deviation of 1.47 percent, which we also

assume is the true data-generating process. Finally, the leverage parameter for the consumption

claim, γ, is set to 4.806 to generate mean annualized equity returns of 6.33 percent.

We calibrate λ to equal 106.8 to match the observed Sharpe ratio on equities. The calibration

of α is slightly more difficult. Its effects on asset prices are highly similar to those of λ, so it is not

straightforward to calibrate both α and λ from aggregate data.

It is possible to draw a link between α and λ if we interpret α as in the literature on multiplier

preferences. Hansen and Sargent (2005) and Barillas, Hansen, and Sargent (2009) show that the

coefficient of relative risk aversion in Epstein–Zin preferences – our α – can be interpreted as a

measure of the agent’s willingness to consider alternative distributions of the innovations ε, where

the measure of distance between distributions is again the KL divergence. That is, our combi-

nation of model uncertainty over Θ with Epstein–Zin preferences can alternatively be viewed as

a combination of two layers of model uncertainty – over Θ and the distribution of ε separately.

The appendix formalizes this argument and shows that if agents use the same penalty on the KL

divergence over the distribution of ε and also the model Θ, then α is linked to λ through the formula

α = 1 +
1

λ (1− β)
(30)

yielding α = 4.73.

The link between α and λ in equation (30) is useful because it eliminates a degree of freedom

from our calibration. In order to justify it, though, one must accept the assumptions of multiplier

20Setting this parameter to a higher value (e.g. 0.9751/4 as in Bansal and Yaron (2004)) increases the mean and

standard deviation of equity returns but has no effect on the Sharpe ratio.
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preferences, which include that agents have unit risk aversion over unambiguous risks. So while

(30) is helpful, it is also only a very special case. Alternatively, α can simply be taken as another

free preference parameter, rather than as a measure of robustness (in the multiplier preference inter-

pretation). So it is important that our calibration of α be objectively reasonable as a measure of risk

aversion. Risk aversion of 4.73 is extraordinarily small in the context of the consumption-based

asset pricing literature with Gaussian innovations. It well within the upper bound of 10 proposed

by Mehra and Prescott (1985), and almost precisely equal to average risk aversion measured by

Barsky et al. (1997).21 α therefore takes on a plausible value in its own right, separate from any

connection it may have to λ.

To further investigate how reasonable λ is, in the next section we show that it implies a worst-

case model that is rarely rejected by statistical tests on data generated by the true model. An

investor with the true model as her point estimate might reasonably believe the worst case could

have actually generated the data that led to that point estimate.

7 Quantitative implications

7.1 The white noise case

We report the values of the parameters in the worst-case consumption process in table 1. As noted

above, the autocorrelation of the predictable part of consumption growth under the worst-case

model is β, implying that trend shocks have a half-life of 70 years, as opposed to the three-year

half-life in the original calibration in Bansal and Yaron (2004).22 bw (β)σw, the relevant measure

of the total risk in the economy, is 0.036 at the quarterly frequency in our model, compared to

0.031 in theirs.23 Our model thus has more persistence and more total risk.

Note also that σw is only 0.4 percent larger than σ̄. So the conditional variance of consumption

growth under the worst-case model is essentially identical to that under the benchmark. However,

because the worst-case model is so persistent, bw (β) is 2.45 times higher than b̄ (β), thus implying

that the worst-case economy is far riskier than the point estimate.

21Average here is the haromic mean – the inverse of the arithmetic mean of risk tolerance. In an update and extension

of Barsky et al.’s (1997) analysis, Kimball, Sahm, and Shapiro (2008) estimate similar values.

Our value for α is less than half that used by Bansal and Yaron (2004), who themselves are notable for using a low

value, and it is similar to that of Barro (2006), who uses values of 2 to 4 in a model with rare disasters.
22The 70-year half-life is sensitive to the choice of β. It is equal to log (1/2) / log (β). If β = 0.9751/4, the half-life

falls to 27 years. Nevertheless, the worst-case is robustly far more persistent than Bansal and Yaron’s (2004) trend –

to obtain a half-life of 3 years, we would need an annual rate of time preference of 21 percent. Online appendix table

A3 reports results under a calibration with β = 0.951/4.
23Using the notation for the long-run risk model from above, and denoting the AR(1) coefficient for x as ρ, we

calculate the equivalent of b (β) in Bansal and Yaron’s (2004) model as b (β) =
√

var(ν)

(1−βρ)2 + var (η) which yields

b (β) = 0.029. Dew-Becker (2015) discusses this calculation and its relation with risk premia in more detail.
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Table 1 about here.

7.1.1 Unconditional moments

Table 1 reports key asset pricing moments. The first column shows that the model can generate a

high standard deviation for the pricing kernel (and hence a high maximal Sharpe ratio), high and

volatile equity returns, and low and stable real interest rates, as in the data. The equity premium

and its volatility are 6.33 and 19.42 percent respectively, identical to the data. The real risk-free

rate has a mean of 1.89 percent and a standard deviation of 0.31 percent.

The second column in the bottom section of table 1 shows what would happen if we set λ =∞
but held α fixed at 4.73, so that we would be back in the standard Epstein–Zin setting where there

is no uncertainty about dynamics. The equity premium then falls from 6.33 to 1.95 percent, since

the agent exhibits no concern for long-run risk. Furthermore, because the agent no longer behaves

as if consumption growth is persistent, a shock to consumption has far smaller effects on asset

prices. The standard deviation of returns falls from 19.4 to 14.1 percent and the standard deviation

of the price/dividend ratio falls from 19 percent to exactly zero. The agent’s fear of a model with

long-run risk thus raises the mean of returns by a factor of more than 3 and the volatility by a factor

of 1.4.

Recall from equation (28) that the mean equity premium is due both to the investor’s belief

about the covariance of returns with the pricing kernel – which depends on the worst-case dy-

namics, bw – and also the difference between the true and worst-case mean levels of consumption

growth, µ̄−µw. Of the 633 basis point equity premium, 54 basis points come from the mean effect,

while 579 come from the dynamics. So uncertainty about mean consumption growth is relatively

unimportant in driving the equity premium. That result is driven by the fact that the worst-case dy-

namics have two compounding effects on the equity premium – they make both the pricing kernel

and equity returns more volatile, interacting to generate a large increase in the equity premium.24

Going back to the first column, we see that there are large and persistent movements in the

price/dividend ratio in our model. The one-year autocorrelation of the price/dividend ratio at 0.96

is somewhat higher than the empirical autocorrelation, while the standard deviation is 0.19, similar

to the empirical value of 0.29. These results are particularly notable given that there is no free

parameter that allows us to directly match the behavior of prices.

Volatility in the price/dividend ratio has the same source as the predictability in equity returns

discussed above: the agent prices assets under a model where consumption growth has a persistent

component. So following positive shocks, she is willing to pay relatively more, projecting that

dividends will continue to grow in the future. From the perspective of an econometrician, these

24Collin-Dufresne, Johannes, and Lochstoer (2015) also find that uncertainty about dynamics is relatively more

important for the equity premium than uncertainty about mean consumption growth.
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Figure 2 about here.

movements seem to be entirely due to discount-rate effects: dividend growth is entirely unpre-

dictable, since dividends are a multiple of consumption, and consumption follows a random walk.

On the other hand, from the perspective of the investor (or her worst-case model), there is almost

no discount-rate news. Rather, she prices the equity claim differently over time due to variation in

forecasts of future cash flows.

The bottom row of table 1 reports average gap between the yields on real 1- and 10-year zero-

coupon bonds. The term structure is very slightly downward-sloping in the model, a feature it

shares with Bansal and Yaron’s (2004) results. The downward slope is consistent with the long

sample of inflation-indexed bonds from the UK reported in Evans (1998). A thorough analysis of

the implications of our model for the term structure of interest rates is beyond the scope of this

paper, but we simply note that the implications of the model for average yields are not wildly at

odds with the data and are consistent with past work.

A final feature of the data that papers often try to match is the finding that interest rates and

consumption growth seem to be only weakly correlated, suggesting that the EIS is very small.

Since consumption growth in this model is unpredictable by construction, standard regressions of

consumption growth on lagged interest rates that are meant to estimate the EIS, such as those in

Hall (1988) and Campbell and Mankiw (1989), will generate EIS estimates of zero on average.

7.1.2 Return predictability

To quantify the degree of predictability in returns, figure 2 plots percentiles of sample R2s from

regressions of returns on price/dividend ratios in 360-quarter samples (the length of the empirical

sample). The gray line is the set of corresponding values from the data between 1926 and 2015.

We report R2s for horizons of 1 quarter to 10 years. At both short and long horizons the model

matches the data well. The median R2 from the predictive regressions at the 10-year horizon

is 31 percent, while in the data it is 25 percent. This is in contrast with the complete lack of

predictability (reflecting the i.i.d. nature of the true data generating process) of consumption and

dividend growth.

Beeler and Campbell (2012) argue that cash flows are excessively predictable in Bansal and

Yaron’s (2004) calibration. In our setting, there is precisely zero cash-flow predictability by con-

struction. Our results are thus consistent with evidence from various sources on the excess volatility

in aggregate asset prices (Leroy and Porter (1981), Shiller (1981), Cochrane (2008)).

In fact, our results are consistent with all three of Beeler and Campbell’s (2012) criticisms of the

long-run risk model: consumption and dividends are not predicted with asset prices, asset return

volatility is not predicted by asset prices, and consumption growth is not predicted by interest
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rates. In other words, we obtain the major intuition and results of the long-run risk model –

that investors fear low-frequency fluctuations in consumption growth and thus demand large risk

premia on stocks – but without relying on significant predictability in consumption, dividends, or

volatility.

Of course, we obtain these results by exploiting the wedge between the true data generating

process and the one that informs investors’ evaluation of risky payoffs. But, as we show below, this

wedge is empirically reasonable, in the sense that the worst-case model is a perfectly reasonable

process for a person to believe generated the data, given, say, a century of data.

7.1.3 Probability of rejecting the worst-case dynamics

For our calibration of λ to be intuitively reasonable, the worst-case model should be thought plau-

sible by the agent. One way of interpreting this statement is that the worst-case model should fit a

sample of data generated by the true model nearly as well as the true model itself.

We consider two tests of the fit of the worst-case model to the true white-noise consumption

process: Ljung and Box’s (1978) portmanteau test and the likelihood-based test of an ARMA(1,1)

suggested by Andrews and Ploberger (1996).25 The likelihood-based test is in fact a correctly

specified likelihood-ratio test and thus should be asymptotically most powerful. To test that the

worst-case model is the correct specification, we take a simulated sample of consumption growth,

∆ct, and construct artificial residuals,

εΘw

t ≡ (∆ct − µw − aw (L) (∆ct−1 − µw)) (σw)−1
(31)

Under the null that the worst-case model is the correct specification, εΘw

t should be white noise.

The Ljung–Box and Andrews–Ploberger tests both ask whether that null can be rejected. Since

consumption growth is generated as white noise, εΘw

t is in fact not i.i.d.. In a sufficiently large

sample, an investor will be able to reject the hypothesis that consumption was driven by the worst-

case model by observing that εΘw

t is serially correlated. We obtain small-sample critical values for

the two test statistics by simulating their distributions under the null.

The top section of table 2 reports the probability that the agent would reject the hypothesis that

consumption growth was driven by the worst-case model after observing a sample of white-noise

consumption growth. We simulate the tests in both 50- and 100-year samples. In all four cases, the

rejection probabilities are only marginally higher than they would be if the null hypothesis were

actually true. The ARMA(1,1) test is the stronger of the two, with rejection rates of 5.5 and 6.3

25The intuition behind this approach is similar to that underpinning the detection error probability (DEP) calcula-

tions of Barillas, Hansen, and Sargent (2009), which are widely used to calibrate robustness models. Although we

do not report them here, the DEPs in our case also indicate that the worst-case and benchmark models are difficult to

distinguish.
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Table 2 about here.

percent in the 50- and 100-year samples, respectively, while the Ljung–Box test performs slightly

worse, with rates of 4.6 and 5.1 percent. The online appendix reports further results using other

statistical tests and longer samples.26

Table 2 thus shows that the worst-case model, while having economically large differences

from the point estimate in terms of its asset pricing implications, can barely be distinguished from

the point estimate in long samples of consumption growth. From a statistical perspective, it is

entirely plausible that an investor would be concerned that the worst-case model could be what

drives the data. Thus both λ and α (which were calibrated jointly with only a single degree of

freedom) take on independently reasonable values.

Furthermore, the extreme difficulty of distinguishing the benchmark and worst-case models

with long samples of data also suggests that our decision not to model learning explicitly is likely

relatively innocuous. Although allowing for learning is conceptually desirable, any learning about

low frequency properties of the model would still apply to frequencies far shorter than those that

our investor emphasizes under the worst case, as determined by Z (ω).

Since risk aversion and the conditional volatility of consumption growth are constant, stock

returns should not be predictable if the worst-case model is true. So another potential way to test

the worst-case model would be to test for return predictability. Since returns are a linear function

of current and past consumption growth, though, they contain no information not contained in

the history of consumption growth. We focus on formal statistical tests, like the likelihood ratio,

because they should use that information efficiently.

Stock prices and returns depend on the low-frequency characteristics of consumption growth,

though – exactly where the worst-case deviates from the benchmark. So we might expect them

to provide a stronger test. As an example, consider simulations of the R2s for forecasts of five-

year excess equity returns in 100-year samples. The average R2 when the data is generated by

the white-noise model but agents price under the worst-case is 0.19. The average R2 when the

data is generated by the worst-case model – in which case the equity premium is constant – is

0.13. So our ambiguity aversion substantially increases predictability (to the point that the model

matches the data well). But the difference is small relative to the dispersion in R2s: in only 14.7

percent of samples does the R2 allow the agent to reject the worst-case at the 95-percent level.27

So even with a test that focuses on the frequencies where the worst-case model deviates from the

benchmark most, with a century of data, the agent would still statistically reject the worst-case

26The under-rejection in small samples comes from the fact that εΘw

t is negatively autocorrelated when the data

is driven by the white-noise benchmark. The online appendix explores rejection probabilities for a larger set of test

statistics and with samples up to 1000 years long.
27That is, the R2 for data generated under the benchmark is above the 95th percentile of the R2 for data generated

by the worst-case in 14.7 percent of the samples.
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very infrequently.

7.1.4 Alternative calibrations of the pricing model

We derive the worst-case model endogenously, but similar models have also been assumed for in-

vestor expectations. Bansal and Yaron (2004) argue that a model with trend shocks with a quarterly

persistence 0.94 fits the data well. Hansen and Sargent (2010) consider a setting where investors

focus on two models for consumption growth, the more persistent of which has a trend compo-

nent with an autocorrelation of 0.99. Due to ambiguity aversion in their model, asset prices are

primarily driven by the more persistent model.

The bottom section of table 2 examines how rejection probabilities change if we modify the

pricing model to use a less persistent trend. In all rows we hold bw (β) fixed and simply modify

the persistence of consumption growth under the pricing (null) model. In other words, we ask how

easy different models are to distinguish from white noise, holding constant the relevant measure of

risk and varying the persistence of shocks.

The top row is the calibration from the main analysis, where persistence is equal to the time

discount factor. As the degree of persistence falls, the investor’s ability to reject the pricing model

in a century-long sample rapidly improves. When the persistence is 0.99, as in Hansen and Sargent

(2010), the pricing model is rejected 13.9 percent of the time – twice as often as our endogenous

worst-case model. When the persistence falls to 0.94 as in Bansal and Yaron (2004), the pricing

model is rejected 82.4 percent of the time. The result that the persistence of the worst-case model

should be equal to β is clearly key to ensuring that the model is difficult to reject in simulated data.

7.2 Estimated consumption dynamics

We now examine the worst-case scenario associated with an estimated small-scale model of con-

sumption growth. The above analysis assumes that the point estimate for consumption dynamics is

that consumption growth is i.i.d.. We now relax that assumption and examine a more sophisticated

estimation framework.

We study quarterly data on per capita non-durables and services consumption in the United

States. The Bayesian information criterion leads us to the choice of an ARMA(1,1) from a range of

small-scale ARMA models (up to an ARMA(5,5)). A key feature of the estimate is that the spectral

density f̄ (ω) varies across frequencies, which allows us to ask whether variation in estimation

uncertainty across frequencies is qualitatively or quantitatively relevant in determining the worst-

case model.

We concentrate on the worst-case choice of dynamics and abstract from distortions to the inno-

vation mean and variance. We first consider what worst-case model the agent would derive if she
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Figure 3 about here.

were constrained to minimize utility with respect to a transfer function implied by an ARMA(1,1).

That is, utility is minimized by choosing a worst-case {ρ, θ} in the model

∆ct = µ+ ρ (∆ct−1 − µ) + εt − θεt−1 (32)

in order to minimize lifetime utility subject to the penalty λg
(
b; b̄
)
. We denote this “parametric”

worst case as bp. The restriction that the worst case only allows changes in the parameters ρ and

θ is typical in the literature; it assumes that investors know the model driving consumption growth

and they need only estimate its parameters.28 We compare bp (which depends only on {ρp, θp}) to

the bw obtained following the main analysis above (i.e. allowing an arbitrary bw, instead of just an

ARMA(1,1)).

In figure 3 we plot the real part of the transfer functions implied under the benchmark and the

two worst cases. Except at low frequencies, the parametric worst case is essentially indistinguish-

able from the point estimate, while the nonparametric worst case differs much more dramatically.

Intuitively, since there are only two free parameters in the restricted parametric problem, it is im-

possible to generate the deviations very close to frequency zero that have both high utility cost and

low detectability. So, instead of large deviations on a few frequencies, as in the nonparametric

case, the parametric worst case puts very small deviations on a wide range of frequencies.

The specific parameters in the benchmark and parametric worst-case models are
{
ρ̄, θ̄
}

=

{0.789, 0.587} and {ρp, θp} = {0.803, 0.600} respectively, implying b̄ (β) = 1.94 and bp (β) =

2.02. The parametric worst-case model is thus nearly identical to the benchmark model. The

relevant measure of risk in the economy is thus essentially identical under the two models, meaning

that the equity premium is almost completely unaffected by parameter uncertainty of this sort. In

contrast, under the unconstrained nonparametric worst case bw (β) = 4.40, more than two times

higher than b̄ (β).

Thus, when we allow the agent to choose an unrestricted worst-case model, the outcome is

very similar to what we obtained for the white-noise benchmark. The worst-case deviates from

the benchmark at very low frequencies. This is true even though in this setting the estimation

uncertainty (through f̄ (ω)) varies across frequencies.

28See Collin-Dufresne, Johannes, and Lochstoer (2013) for a deep analysis of the case of parameter uncertainty

with Epstein–Zin preferences. Andrei, Carlin, and Hasler (2013) study a model in which investors disagree about the

persistence of trend growth rates.
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8 Conclusion

This paper studies asset pricing when agents are unsure about the endowment process. The funda-

mental insight is that the long-run risk model, precisely because it is difficult to test for empirically

and yet has important welfare implications, represents a natural model for investors who are un-

sure of the true data-generating process to use for pricing assets. More technically, for an agent

with Epstein–Zin preferences who estimates consumption dynamics nonparametrically, the model

that leads to the lowest lifetime utility for a given level of plausibility displays large amounts of

long-run risk in consumption growth. In fact, when the agent’s point estimate is that consumption

growth is i.i.d., the worst-case model is literally the homoskedastic long-run risk model of Bansal

and Yaron (2004). Furthermore, the nonparametric worst-case model can differ substantially from

a parametric worst case that only features parameter uncertainty, instead of uncertainty about the

actual model driving consumption growth.

We are able to obtain solutions in a setting that previously resisted both analytic and numerical

analysis. The results show exactly what types of models agents fear when they contemplate un-

restricted dynamics: they fear fluctuations at the very lowest frequencies. Not only do these fears

raise risk premia on average, but they also induce countercyclical risk premia, raising the volatility

of asset prices and helping to match the large movements in aggregate price/dividend ratios.

In a calibration of our model where the true process driving consumption growth is white noise,

we generate a realistic equity premium, a volatile and realistically persistent price/dividend ratio,

returns with similar predictability to the data at both short and long horizons, and estimates of

the EIS from aggregate regressions of zero. None of these results require us to posit that there is

long-run risk in the economy. They are all driven by the agent’s worst-case model. And we show

that the worst-case model is not at all implausible: it is rejected at the 5 percent level in less than

10 percent of simulated 100-year samples.

Economists have spent years arguing over what the consumption process is. We argue that a

reasonable strategy, and one that is tractable to solve, for an investor facing that type of uncertainty,

would be to make plans for a worst-case scenario. The message of this paper is that worst-case

planning is able to explain a host of features of the data that were heretofore viewed as puzzling

and difficult to explain in a setting that was even remotely rational.
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Table 1: Asset pricing moments for the white-noise benchmark
Consumption dynamics Benchmark Worst-case
σ Consumption conditional volatility 1.47% 1.47%
b(β) Long-run volatility 1 2.449
μ Mean consumption growth 0.45% 0.37%

Asset pricing moments (annualized) Model Standard EZ Data
Standard deviation of pricing kernel 0.30 0.14 N/A
Mean excess equity return 6.34 1.95 6.33
Standard deviation of equity return 19.44 14.09 19.42
Mean risk-free rate 1.89 2.44 0.86
Standard deviation of risk-free rate 0.31 0 0.97
1-year autocorrelation of P/D 0.96 N/A 0.81
Standard deviation of P/D 0.19 0 0.29
Mean 10-year/1-quarter term spread -13.3bp 0 N/A
Implied estimate of EIS 0 N/A 0.14

Notes: Moments from the model with a white-noise benchmark process for consumption growth. The "standard  
Epstein–Zin" results are for where the agent is sure of the consumption process. P/D is the price/dividend ratio for the 
levered consumption claim. The values in the data treat the aggregate equity market as analogous to the levered consumption 
claim. The EIS estimate is based on a regression of consumption growth on interest rates. In the second column interest 
rates are constant, so the regression is degenerate.



Table 2. Probability of rejecting the pricing model
Rejection probs. (5% critical value, H0=worst-case model)

50-year sample 100-year sample
Ljung–Box 5.1% 5.1%
ARMA(1,1) 5.6% 6.0%

ARMA(1,1) rejection probabilities for alternative persistence in pricing model
Persistence 100-year sample

0.9975 6.0% (Our worst case)
0.995 8.7%
0.99 13.5% (Hansen and Sargent (2010))
0.98 28.3%
0.94 82.7% (Bansal and Yaron (2004))

Notes: Rejection probabilities are obtained by simulating the distributions of the test statistics in 50- and 100-year 
simulations of the cases where consumption growth is generated by the worst-case and white-noise models and 
asking how often the statistics in the latter simulation are outside the 95% range in the former simulation. In the 
bottom section, persistence is reduced but the price of risk in the pricing model is held constant.
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A Full derivation of proposition 1 and corollary 2

A.1 Deriving the Kullback—Leibler divergence

We model the agent as comparing models based on the expected value of a squared distance. In the case

of a Gaussian model, the distance is exactly the expected likelihood ratio. When the time series are non-

Gaussian, it becomes a quadratic distance that has been widely studied in the time series econometrics

literature.

Models are indexed by the parameter set Θ ≡
{
b, µ, σ2

}
. The investor has a benchmark model for

consumption growth dynamics, Θ̄. Denote the covariance matrix of consumption growth implied by a

model Θ as ΣΘ . The log likelihood for a sample of consumption growth under the model Θ is

−1

2
log |ΣΘ| −

1

2
(∆c1,...,T − µ)′Σ−1

Θ (∆c1,...,T − µ) (A.1)

where ∆c1,...,T denotes a column vector containing the sample of observed consumption growth between

dates 1 and T . Now suppose consumption growth is generated by the model Θ. One may show that as

T →∞, the expected log likelihood for the model Θ̄ =
{
b̄, µ̄, σ̄2

}
is equal to

lim
T→∞

T−1EΘ

[
−1

2
log |ΣΘ̄| −

1

2
(∆c1,...,T − µ̄)′Σ−1

Θ̄
(∆c1,...,T − µ̄)

]
= −1

2

1

2π

∫ π

−π
log fΘ̄ (ω) dω − 1

2

1

2π

∫ π

−π

fΘ (ω)

fΘ̄ (ω)
− 1dω − 1

2

(µ− µ̄)2

fΘ̄ (0)
(A.2)

where EΘ denotes an expectation when the data is generated by the model Θ. (A.2) is simply the expected

value of Whittle’s (1953) expression for the log likelihood. Formally, the limit is an application of a well

known result from Grenander and Szego (1958) that Toeplitz matrices converge asymptotically to circulant

matrices. See Gray (2006) for a recent textbook review of such results. Examples of recent work using and

extending the Whittle likelihood include Monti (1997), Dahlhaus (2000) and Shimotsu and Phillips (2005).

Now note that
1

2π

∫ π

−π

fΘ (ω)

fΘ̄ (ω)
dω =

1

2π

σ2

σ̄2

∫ π

−π

|B (ω)|2∣∣B̄ (ω)
∣∣2dω (A.3)

Also, as long as the roots of B and B̄ are inside the unit circle, we have 1
2π

∫ π
−π

B(ω)
B̄(ω)

dω = 1.1 We can

1To confirm this, write b (L) as b (L) =
∏
j (1− ajL) for |aj | < 1. Using the same form for b̄, note that each of the factors

of 1/b̄ (L) has a convergent Taylor series, 1
1−ājL

=
∑∞
k=0 ā

k
jL

k. Then the ratio B (ω) /B̄ (ω) may be written as

B (ω) /B̄ (ω) =
∏
j

(
1− ajeiω

)( ∞∑
k=0

ākj e
iωk

)
(A.4)

This function only has Fourier coeffi cients on the positive side of the origin, and the coeffi cient on the constant is a0
j = 1.

That is, all the terms multiplying eiωk for k > 0 integrate to zero, so 1
2π

∫ π
−π B (ω) /B̄ (ω) dω = 1.
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therefore write

1

2π

∫ π

−π

|B (ω)|2∣∣B̄ (ω)
∣∣2dω =

1

2π

∫ π

−π

∣∣∣∣B (ω)

B̄ (ω)

∣∣∣∣2 − B (ω)

B̄ (ω)
− B (ω)∗

B̄ (ω)∗
+ 2dω (A.5)

=
1

2π

∫ π

−π

∣∣∣∣B (ω)− B̄ (ω)

B̄ (ω)

∣∣∣∣2 dω + 1 (A.6)

Which implies that

1

2π

∫ π

−π

σ2

σ̄2

|B (ω)|2∣∣B̄ (ω)
∣∣2 − 1dω =

1

2π

σ2

σ̄2

∫ π

−π

∣∣∣∣B (ω)− B̄ (ω)

B̄ (ω)

∣∣∣∣2 dω +
σ2

σ̄2
− 1 (A.7)

=
1

2π

σ2

σ̄2

∫ π

−π

∣∣∣∣B (ω)− B̄ (ω)

B̄ (ω)

∣∣∣∣2 dω +
σ2 − σ̄2

σ̄2
(A.8)

Note also that Kolmogorov’s formula implies that 1
2π

∫ π
−π log fΘ (ω) dω = log σ2.

The investor measures the distance between the benchmark model Θ̄ and an alternative Θ as the

difference in the asymptotic expected log likelihoods of the two models when the data is generated by Θ,

which is the KL divergence,

lim
T→∞

T−1EΘ

[
LL (T,Θ)− LL

(
T, Θ̄

)]
=

1

2

1

2π

σ2

σ̄2

∫ π

−π

∣∣B (ω)− B̄ (ω)
∣∣2∣∣B̄ (ω)

∣∣2 dω

−1

2

(
log

(
σ2

σ̄2

)
− σ2 − σ̄2

σ̄2

)
+

1

2

(µ− µ̂)2

fΘ̄ (0)
(A.9)

A.2 Minimization

The investor’s optimization problem to find the worst-case model is

min
b,µ,σ2

β

1− β
1− α

2
b (β)2 σ2 +

β

1− βµ+
λ

2

[∫
f (ω)

f̄ (ω)
− log

f (ω)

f̄ (ω)
dω +

(µ− µ̄)2

f̄ (0)

]
(A.10)

where the integral sign without limits denotes 1
2π

∫ π
−π.

The spectral density f (ω) can be expressed as

f (ω) = exp

2
∞∑
j=0

cj cos (ωj)

 (A.11)

for a set of real coeffi cients cj (Priestley (1981)). The coeffi cients cj are simply the Fourier coeffi cients of

the log of the spectrum; we only include coeffi cients for non-negative j because the spectrum is a real and

3



even function. Furthermore, setting σ = exp (c0), we have

σB (ω) = exp

 ∞∑
j=0

cje
iωj

 (A.12)

bm =

∫
e−iωm exp

 ∞∑
j=1

cje
iωj

 dω (A.13)

where the bj are the coeffi cients from the Wold representation for the spectrum |B (ω)|2 (Priestley (1981)).
Since σ = exp (c0), b0 = 1. Furthermore, bj = 0 for all j < 0. (A.12) is known as the canonical factorization

of the spectrum. We solve the optimization problem by directly choosing the cj . Since the Fourier transform

is one-to-one, choosing the cj is equivalent to optimizing over the spectrum directly. Since B (ω) is obtained

from the Wold representation, it is guaranteed to be causal, invertible, and minimum-phase. Last, the

innovation variance associated with the spectrum f (ω) is σ2 = exp (2c0).

We first calculate derivatives involved in the optimization

d

dcj
[σb (β)] =

d

dcj

∞∑
m=0

βm
∫

exp

 ∞∑
j=0

cje
iωj

 e−iωmdω (A.14)

=
∞∑
m=0

βm
∫

d

dcj
exp

 ∞∑
j=0

cje
iωj

 e−iωmdω (A.15)

=
∞∑
m=0

βm
∫

exp

 ∞∑
j=0

cje
iωj

 e−iω(m−j)dω (A.16)

= σ

∞∑
m=0

βmbm−j (A.17)

= σ
∞∑
m=0

βm+jbm = σb (β)βj (A.18)

where the derivative can be passed inside the integral because B (ω) is continuous and differentiable with

respect to the cj and the last line follows from the fact that bj = 0 for j < 0.

Next, the derivative of the ratio of the spectra is

d

dcj

∫
f (ω)

f̄ (ω)
dω =

d

dcj

∫ exp
(

2
∑∞

j=0 cj cos (ωj)
)

f̄ (ω)
dω (A.19)

= 2

∫
f (ω)

f̄ (ω)
cos (ωj) dω (A.20)

And last,
d

dc0

∫
log

f (ω)

f̄ (ω)
dω = 2 (A.21)
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So we have

min
b,µ,σ2

β

1− β
1− α

2
σ2b (β)2 +

β

1− βµ+
λ

2

[∫
f (ω)

f̄ (ω)
− log

f (ω)

f̄ (ω)
dω +

(µ− µ̄)2

f̄ (0)

]
(A.22)

The first-order condition for each j > 0 is

0 = 2
β

1− β
1− α

2
σ2
wb

w (β)2 βj +
λ

2

∫
fw (ω)

f̄ (ω)
2 cos (ωj) dω (A.23)

For j = 0,

0 = 2
β

1− β
1− α

2
σ2
wb

w (β)2 +
λ

2

∫
fw (ω)

f̄ (ω)
2dω − λ (A.24)

Now multiply each of the first-order conditions by cos (jκ) for some κ.

0 = 2
β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

∫
fw (ω)

f̄ (ω)
2 cos (jκ) cos (ωj) dω (A.25)

= 2
β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

∫
fw (ω)

f̄ (ω)
(cos (j (κ+ ω)) + cos (j (κ− ω))) dω (A.26)

= 2
β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

∫
fw (ω)

f̄ (ω)
2 cos (j (κ+ ω)) dω (A.27)

where the third line follows by

= 2
β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

[∫
fw (ω)

f̄ (ω)
cos (j (κ+ ω)) dω +

∫
fw (ω)

f̄ (ω)
cos (j (κ− ω)) dω

]
= 2

β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

[∫
fw (ω)

f̄ (ω)
cos (j (κ+ ω)) dω +

∫
fw (−ω)

f̄ (−ω)
cos (j (κ+ ω)) dω

]
= 2

β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

[∫
fw (ω)

f̄ (ω)
cos (j (κ+ ω)) dω +

∫
fw (ω)

f̄ (ω)
cos (j (κ+ ω)) dω

]

That is, since fw(ω)

f̄(ω)
is even, we can always reverse the sign of ω in the integration.

Now take the first-order condition (FOC) for j = 0, multiply it by 1
2 , and add to the sum of the FOCs

for j > 0 multiplied by cos (κj),

0 =
β

1− β
1− α

2
σ2
wb

w (β)2 +
λ

2

∫
fw (ω)

f̄ (ω)
dω − λ

2
(A.28)

+
β

1− β
1− α

2
σ2
wb

w (β)2
∞∑
j=1

2 cos (jκ)βj +
λ

2

∫
fw (ω)

f̄ (ω)

∞∑
j=1

2 cos (j (κ+ ω)) dω (A.29)

=
β

1− β
1− α

2
σ2
wb

w (β)2

1 +

∞∑
j=1

2 cos (jκ)βj

+
λ

2

∫
fw (ω)

f̄ (ω)

1 +

∞∑
j=1

2 cos (j (κ+ ω))

 dω − λ

2
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We have

1 +
∞∑
j=1

2 cos (j (κ+ ω)) = δ (κ+ ω) (A.30)

where δ (·) is the Dirac delta function. Furthermore, note that Z (ω) is the transfer function of an AR(1)

model with autocorrelation of β. It then follows that

(
1− β2

)
|Z (κ)|2 = 1 +

∞∑
j=1

2 cos (jκ)βj (A.31)

The FOC then becomes

0 =
β

1− β
1− α

2
σ2
wb

w (β)2 (1− β2
)
|Z (κ)|2 +

λ

2

(
fw (ω)

f̄ (ω)
− 1

)
(A.32)

fw (ω)

f̄ (ω)
− 1 = λ−1 β

1− β (α− 1)σ2
wb

w (β)2 (1− β2
)
|Z (κ)|2 (A.33)

fw (ω) = f̄ (κ) + λ−1β (1 + β) (α− 1) f̄ (κ)σ2
wb

w (β)2 |Z (κ)|2 (A.34)

This is the main result in the text.

A.3 The white-noise benchmark

In the white noise case, f̄ (κ) = σ̄2. The mean immediately follows,

µw = µ̄− λ−1 β

1− β σ̄
2 (A.35)

For the dynamics,

fw (ω) = σ̄2 + λ−1β (1 + β) (α− 1) σ̄2σ2
wb

w (β)2 |Z (ω)|2 (A.36)

Denote the autocovariances under the worst-case model as γwj . Then

γw0 + 2
∞∑
j=1

γwj cos (ωj) = σ̄2

1 + ϕ

1 + 2
∞∑
j=1

cos (ωj)βj

 (A.37)

where ϕ ≡ λ−1 β

1− β (α− 1)σ2
wb

w (β)2 (A.38)

Matching coeffi cients on each side yields

γw0 = σ̄2 (1 + ϕ) (A.39)

γwj = σ̄2ϕβj for |j| > 0 (A.40)
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These may be recognized as the autocovariances of an ARMA(1,1) process. Specifically, set

∆ct = xt + vt (A.41)

xt = βxt−1 + µt (A.42)

σ2
v = σ̄2 (A.43)

σ2
µ = σ̄2ϕ

(
1− β2

)
(A.44)

Then one may confirm that ∆ct has autocovariances γwj .

To find the equivalent univariate ARMA(1,1) representation, note that

∆ct − β∆ct−1 = xt − βxt−1 + vt − βvt−1 (A.45)

= µt + vt − βvt−1 (A.46)

The second line is an MA(1), with

mt ≡ µt + vt − βvt−1 (A.47)

var (mt) = σ2
µ +

(
1 + β2

)
σ2
v =

(
1 + θ2

)
σ2
w (A.48)

cov (mt,mt−1) = −βσ2
v = −θσ2

w (A.49)

We then find θ and σ2
w by solving that pair of equations. We have

θ =

(
σ2
µ

σ2
v

+
(
1 + β2

))
β−1 −

√(
σ2
µ

σ2
v

+
(
1 + β2

))2
β−2 − 4

2
(A.50)

which immediately yields σ2
w. Now θ depends on σ2

µ, which depends on ϕ. But ϕ itself depends on b (β).

We therefore solve for θ and σ2
ε iteratively. Specifically, begin by guessing that ϕ = λ−1 β

1−β (α− 1) σ̄2. We

then calculate θ and σ2
w for that guess, and update ϕ, with ϕ = λ−1 β

1−β (α− 1)σ2
w

(
1−θβ
1−β2

)2
and iterate to

convergence.

B Testing the worst-case model

This section provides details and further results for the small-sample tests of the worst-case model.

B.1 Test statistics

We examine three tests: the ARMA(1,1) likelihood-ratio test suggested by Andrews and Ploberger (AP;

1996), the Ljung—Box (LB; 1978) test, and a test based on the Newey—West (1987) estimator of the long-run

variance.

For the AP and LB tests, as discussed in the text, we assume that the agent takes an observed

7



consumption history and creates a series of residuals,

εΘw
t ≡ (∆ct − µw − aw (L) (∆ct−1 − µw))σ−1

w (B.1)

Under the null hypothesis that the worst-case model is true, εΘw
t is white noise. To see the dynamics of

εΘw
t under the benchmark model, note that we can write εΘw

t as

εΘw
t =

1− βL
1− θLσ

−1
w (∆ct − µw) (B.2)

(where θ is defined for the worst-case model above). Under the benchmark, ∆ct ∼ N
(
µ̄, σ̄2

)
, so we can

write

εΘw
t =

1− βL
1− θL

σ̄

σw
ε̄t +

1− β
1− θ σ

−1
w (µ̄− µw) (B.3)

where ε̄t ∼ N (0, 1).

When we simulate the distribution of the AP and LB test statistics conditional on the benchmark

model being true, we construct them on simulated samples of εΘw
t using (B.3).

As discussed in the text, for the AP and LB tests, we first calculate critical values under the benchmark

model. That is, we simulate samples of the time series ε̄t ∼ N (0, 1) and then construct the AP and LB

test statistics for each sample. The critical values are the 95th percentiles of those simulated distributions.

The AP statistic is constructed exactly as in Andrews and Ploberger (1996). Specifically, for a sample

εt, t ∈ {1, 2, ..., T}, define

ω̃2 = T−1
T∑
t=1

ε2
t (B.4)

ω̃2 is the log likelihood (ignoring constants) under the null hypothesis that εt ∼ N (0, 1)

Second, define

ε∗t ≡ εt − T−1
T∑
t=1

εt (B.5)

ω̂2 (θ) ≡ T−1
T∑
t=1

(ε∗t )
2 −

T−1

(∑T
t=2 ε

∗
t

∑t−2
i=0 θ

iε∗t−i−1

)2

∑T
t=2

(∑t−2
i=0 θ

iε∗t−i−1

)
 (B.6)

ω̂2 (θ) is the log likelihood when the mean of εt is estimated freely and we also allow estimation of the

parameter θ.

The likelihood ratio statistic is then

LR ≡ sup
θ
T log

ω̃2

ω̂2 (θ)
(B.7)

For each simulated sample, we optimize over θ numerically (first searching over a grid, then using the

simplex algorithm from the best grid point).
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Note that the LR statistic here compares the likelihood of the data under assumptions both that εt is

serially uncorrelated and also that its mean is zero. ω̂2 (θ) is the maximized likelihood under an alternative

model that allows both for serial correlation (of an ARMA(1,1) form) and also a non-zero mean. We also

consider a version of the AP test that ignores the deviation in the mean under the null. This constraint

may potentially improve the power of the test, because it means that we are only testing the dynamics of

consumption growth, not the level. Specifically, the AP statistic with a fixed mean is

LR∗ ≡ sup
θ
T log

(ω̃∗)2

ω̂2 (θ)
(B.8)

(ω̃∗)2 ≡ T−1
T∑
t=1

(ε∗t )
2 (B.9)

LR∗ differs from LR only in that the numerator of the likelihood ratio now uses demeaned data. In other

words, the null allows for an estimated mean.

The LB statistic is calculated using the autocorrelations of the sample of εt, which we denote γ̂j . The

statistic, for a maximum lag of j, is

LBj ≡ T (T + 2)

j∑
k=1

γ̂2
k

T − k (B.10)

γ̂k ≡
∑T

t=k+1 εtεt−k∑T
t=k+1 ε

2
t

(B.11)

Finally, we also examine here a test based on the Newey—West (1987) estimator for the long-run variance

of a time series. We ask whether, observing a sample of data generated by the benchmark model, a person

would reject the hypothesis that the long-run variance is as large as implied by the worst-case model.

Specifically, we calculate the Newey—West estimate of the long-run variance

LRVj = κ̂0 + 2

j∑
k=1

(
1− k

j

)
κ̂j (B.12)

κ̂j ≡ T−1
T−j∑
k=1

(
∆ck − T−1

T∑
t=1

∆ct

)(
∆ck+j − T−1

T∑
t=1

∆ct

)
(B.13)

We simulate the distribution of LRVj given data generated by the worst-case model and define LRV ∗j
to be the 5th percentile of that distribution. The agent then rejects the hypothesis that the data was

driven by the worst-case model after observing a sample drawn from the benchmark model if LRVj in that

particular sample is less than LRV ∗j . That is, we ask how often the estimated long-run variance estimated

under the benchmark model is smaller than the 5th percentile of the long-run variance estimated under

the worst-case model.
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B.2 Extended results

The main text discusses results for the LB and AP tests on samples of 50 and 100 years. Table A2 reports

results using the Newey—West based test and using longer samples up to 1000 years.

As one would expect, as the samples grow, the rejection rates across all four tests rise. For 1000-year

samples, all but the Ljung—Box test reject with probabilities greater than 85 percent, confirming that they

eventually converge to the correct result asymptotically. However, one can see looking across the table

that all the tests converge rather slowly. With 250 years of data, the AP tests reject the worst case still

less than 10 percent of the time, while the NW test rejects approximately 25 percent of the time.

A natural question is why the rejections probabilities are so low, even for the Newey—West based test.

A simple way to see the intuition is to consider the periodogram. In a finite sample, the lowest frequency at

which the periodogram is observed is 2π/T radians, which corresponds to a cycle with wavelength equal to

the sample. Asymptotically, the periodogram is distributed exponentially with mean equal to the spectral

density. What distinguishes the worst-case model from the benchmark is that its spectrum is much larger

at low frequencies.

Specifically, the spectrum under the worst case has a value at frequency zero of fw (0) = bw (1)2 σ2
w =

0.00491,, whereas under the true model, f̄ (0) = 0.000215. So fw (0) is 23 times larger than f̄ (0). Given

that the standard deviation of the periodogram is equal to the level of the spectrum itself, fw (0) is 22

standard deviations higher than f̄ (0) and should be easily distinguishable.

However, since we do not observe the periodogram at frequency zero, what really matters is the value of

the spectrum at ω = 2π/T . For T = 200, fw (2π/200) = 0.000244, which is only higher than f̄ (2π/200) =

σ̄2 by a factor of 1.13. So in a sample with 200 observations, there simply is little information in the sample

that reveals the deviations between fw and f̄ .

In a 100-year sample, rejection is obviously easier. The first periodogram ordinate has mean fw (2π/400) =

0.00312, which is now substantially larger than f̄ . On the other hand, this is still only a single data point

for the estimators to use.

C Interpretation of the distance measure as a Wald test

This section provides an alternative of the distance measure used in the main text as a Wald test on

estimated MA coeffi cients. Specifically, the part of the distance measure
∫ |B(ω)−B̄(ω)|2

f̄(ω)
dω represents the

asymptotic expected value of a Wald statistic for a joint test of all the MA coeffi cients in the lag polynomial

b (L).

Brockwell and Davis (1988b) show that for an MA model of order m, the coeffi cients are asymptotically

10



normal with a covariance matrix denoted Σm. As m→∞, Σm converges to a product,2

Σm → JTruem JTrue′m (C.1)

where JTruem ≡


bTrue0 bTrue1 · · · bTruem

0 bTrue0 · · · bTruem−1
...

...
. . .

...

0 0 · · · bTrue0

 (C.2)

A natural empirical counterpart to that variance is to replace JTrue with J̄ , defined analogously using the

point estimate b̄. The Wald statistic for the MA coeffi cients (ignoring scale factors) is then

m−1
(
b1:m − b̄1:m

) (
J̄mJ̄

′
m

)−1 (
b1:m − b̄1:m

)′ (C.3)

where b1:m is the row vector of the first m elements of the vector of coeffi cients in the model b.

Jm is a Toeplitz matrix, and it is well known that Toeplitz matrices, their products, and their inverses,

asymptotically converge to circulant matrices (Grenander and Szegő (1958) and Gray (2006)). So Σ̄−1
m has

an approximate orthogonal decomposition, converging as m→∞, such that3

Σ̄−1
m ≈ ΛmF̄

−1
m Λ∗m (C.4)

where ∗ here represents transposition and complex conjugation, Λm is the discrete Fourier transform matrix

with element j, k equal to exp (−2πi (j − 1) (k − 1) /m), F̄m is diagonal with elements equal to the discrete

Fourier transform of the autocovariances. Now if we define the vector B to be the Fourier transform of b,

B1:m ≡ b1:mΛm, we have

m−1
(
b1:m − b̄1:m

)
Σ̄−1
m

(
b1:m − b̄1:m

)′ ≈ m−1
(
BmΛ∗m − B̄mΛ∗m

)
ΛmF̄

−1
m Λ∗m

(
B∗′mΛ′m − B̄∗′mΛ′m

)′(C.5)
= m−1

(
Bm − B̄m

)
F̄−1
m

(
Bm − B̄m

)∗ (C.6)

which itself, by Szegő’s theorem, converges as m→∞ to an integral,

m−1
(
Bm − B̄m

)
F̄−1
m

(
Bm − B̄m

)∗ → ∫ ∣∣B (ω)− B̄ (ω)
∣∣2

f̄ (ω)
dω (C.7)

So the integral
∫ |B(ω)−B̄(ω)|2

f̄(ω)
dω may be interpreted as the limiting value of a Wald statistic for the lag

polynomial b taking b̄ as the point estimate.

2The distribution result used here is explicit in Brockwell and Davis (1988). It is implicit in Berk (1974) from a simple
Fourier inversion of his result on the distribution of the spectral density estimates. Note that Brockwell and Davis (1988)
impose the assumption that b0 = 1, which we do not include here.

3Specifically, J̄m ≈ ΛmB̄mΛ∗m = Λ∗′mB̄
∗
mΛ′m, and thus J̄mJ̄

′
m ≈ ΛmB̄mΛ∗mΛmB̄

∗
mΛ∗m = Λm

(
B̄mB̄

∗
m

)
Λ∗m = ΛmF̄mΛ∗m,

where B̄m is the diagonal matrix of the discrete Fourier transform of
[
b̄0, b̄1, ..., b̄m

]
. Again, the aproximations become exact

as m→∞.
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D Lifetime utility (assumption 3)

As discussed in the text, the agent’s expectation of future consumption growth, Et [∆ct+j |Θ] is equal to

expected consumption growth at date t + j given the past observed history of consumption growth and

the assumption that εt has mean zero. Given that the agent believes that the model Θ =
{
b, µ, σ2

}
drives

consumption growth, we can write the innovations implied by that model as

εΘ
t = (∆ct − µ− a (L) (∆ct−1 − µ)) (D.1)

That is, εΘ
t is the innovation that the agent would believe occurred given the observed history of con-

sumption growth and the model Θ. The agent’s subjective expectations for future consumption growth

are then

Et [∆ct+j |Θ] = µ+

∞∑
k=0

bk+jε
Θ
t−k (D.2)

with subjective distribution
∆ct+1 − Et [∆ct+1|Θ]

σ
∼ N (0, 1) (D.3)

We guess that v
(
∆ct; Θ

)
takes the form

v
(
∆ct; Θ

)
= ct + k̄ +

∞∑
j=0

kjε
Θ
t−j (D.4)

Inserting into the recursion for lifetime utility yields

k̄ +
∞∑
j=0

kjε
Θ
t−j =

β

1− α logEt

[
exp

((
k̄ + µ+ (k0 + 1) εΘ

t+1

+
∑∞

j=1 (kj + bj) ε
Θ
t−j+1

)
(1− α)

)
|Θ
]

(D.5)

= β
(
k̄ + µ

)
+ β

∞∑
j=0

(kj+1 + bj+1) εΘ
t−j + β

1− α
2

(k0 + b0)2 σ2 (D.6)

Matching the coeffi cients on each side of the equality yields

kj = β (kj+1 + bj+1) (D.7)

v
(
∆ct; b

)
= ct +

β

1− β
1− α

2
b (β)2 σ2 +

β

1− βµ+

∞∑
k=1

βk
∞∑
j=0

bj+kε
Θ
t−j (D.8)

= ct +
β

1− β
1− α

2
b (β)2 σ2 +

β

1− βµ+

∞∑
j=0

( ∞∑
k=1

βkbj+k

)
εΘ
t−j (D.9)

= ct +
β

1− β
1− α

2
b (β)2 σ2 +

∞∑
k=1

βkEt [∆ct+k|Θ] (D.10)
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E Multiplier preference interpretation

In our main analysis, we model agents as having Epstein—Zin preferences. Such preferences are observation-

ally equivalent (in the sense that they rank all consumption streams identically) to Hansen and Sargent’s

(2001) multiplier preferences. In that model, agents have log utility over consumption, but they form

expectations using a worst-case model over innovations to the consumption process. Specifically, their

preferences are obtained through

vt = min
ht+1

ct + β (Et [ht+1vt+1] + ψEt [ht+1 log ht+1]) (E.1)

where ht+1 is a change of measure with E [ht+1] = 1. ht+1 represents an alternative distribution of the

innovations to the state variables at date t+ 1. In this model, agents select an alternative distribution for

innovations (instead of a full distribution over consumption growth) penalizing alternative distributions

based on their KL divergence (Et [ht+1 log ht+1]).

Inserting the value of ht+1 that solves the minimization problem yields

vt = ct − βψ logEt exp
(
−ψ−1vt+1

)
(E.2)

That is, the Epstein—Zin preferences used in the main text can be interpreted as multiplier preferences

with −ψ−1 = (1− α).

We can thus interpret the model described in the paper as involving two layers of robustness, or two

evil agents. First, there is an evil agent who, in a timeless manner, selects a full worst-case process for

consumption growth. Next, taking the preferences (E.2) a second evil agent causes further deviations in

the innovations to that process.

The second evil agent’s minimization problem is (E.1), and the minimized value function is then (E.2),

which is exactly the preference specification that is minimized in the main text. In other words, both the

minimization problem over the full models for consumption growth that we study and also the minimization

over one-step deviations —which induces Epstein—Zin preferences —depend on a KL divergence penalty.

A natural benchmark is to equalize the penalty on the KL divergence that is involved in both mini-

mization problems. Since the entropy penalty for the second agent is applied in every period, we naturally

scale it up by the discount rate. That is,

λ = ψ/ (1− β) (E.3)

Which immediately yields a connection between λ and α,

λ =
1

1− β
1

α− 1
(E.4)

α = 1 +
λ−1

1− β (E.5)
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F Asset prices and expected returns

F.1 Pricing a levered consumption claim

Using the Campbell—Shiller (1988) approximation, the return on a levered consumption claim can be

approximated as (with the approximation becoming more accurate as the length of a time period shrinks)

rt+1 = δ0 + δpdt+1 + γ∆ct+1 − pdt (F.1)

where δ is a linearization parameter slightly less than 1.

We guess that

pdt = h̄+
∞∑
j=0

hj∆ct−j (F.2)

for a set of coeffi cients h̄ and hj .

The innovation to lifetime utility is

vt+1 − Et [vt+1|bw] =
∞∑
k=0

βk∆Et+1 [∆ct+k+1|Θw] (F.3)

= bw (β) εΘw

t+1 (F.4)

where the investor prices assets as though εΘw
t+1 is a standard normal.

The pricing kernel can therefore be written as

Mt+1 = β exp

(
−∆ct+1 + (1− α) bw (β) εΘw

t+1 −
(1− α)2

2
bw (β)2 σ2

w

)
(F.5)

The pricing equation for the levered consumption claim is

0 = logEt

[
β exp

(
δ0 + (δ − 1) h̄+ (δh0 + γ − 1) ∆ct+1 +

∑∞
j=0 (δhj+1 − hj) ∆ct−j

+ (1− α) bw (β) εΘw
t+1 −

(1−α)2

2 bw (β)2 σ2
w

)
|Θw

]
(F.6)

= (δh0 + γ − 1) ((1− aw (1))µw + aw (L) ∆ct) +
∞∑
j=0

(δhj+1 − hj) ∆ct−j

+δ0 +

(
1

2
(δh0 + γ − 1)2 + (δh0 + γ − 1) (1− α) bw (β)

)
σ2
w + (δ − 1) h̄+ log β (F.7)

Matching coeffi cients on ∆ct−j and on the constant yields two equations,

(δ − 1) h̄+ log β + δ0 = −
(

1

2
(δh0 + γ − 1)2 + (δh0 + γ − 1) (1− α) bw (β)

)
σ2
w

− (δh0 + γ − 1) (1− aw (1))µw (F.8)

(δhj+1 − hj) = − (δh0 + γ − 1) awj (F.9)
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And thus

h0 =
(γ − 1) aw (δ)

1− δaw (δ)
(F.10)

and

δh0 + γ − 1 =
γ − 1

1− δaw (δ)
(F.11)

Note then that

varw (rm,t+1) = (δh0 + γ)2 σ2
w (F.12)

covw (rm,t+1,mt+1) = (δh0 + γ) (−1 + (1− α) bw (β))σ2
w (F.13)

F.2 The risk-free rate

For the risk-free rate, we have

rf,t+1 = − logEt

[
β exp

(
−∆ct+1 + (1− α) bw (β) εΘw

t+1 −
(1− α)2

2
bw (β)2 σ2

w

)
|Θw

]
(F.14)

= − log β + (1− aw (1))µw + aw (L) ∆ct −
1

2
σ2
w + (1− α) bw (β)σ2

w (F.15)

= − log β + µw + aw (L) (∆ct − µw)− 1

2
σ2
w + (1− α) bw (β)σ2

w (F.16)

F.3 Expected excess returns

The expected excess return on the levered consumption claim from the perspective of an econometrician

who believes that consumption dynamics are the point estimate Θ̄ is

Et
[
rt+1|Θ̄

]
= Et

δ0 + (δ − 1) h̄+ (δh0 + γ) ∆ct+1 +

∞∑
j=0

(δhj+1 − hj) ∆ct−j |Θ̄

 (F.17)

= δ0 + (δ − 1) h̄− (δh0 + γ − 1) aw (L) ∆ct + Et
[
(δh0 + γ) ∆ct+1|Θ̄

]
(F.18)

= δ0 + (δ − 1) h̄+ (− (δh0 + γ − 1) aw (L) + (δh0 + γ) a (L)) ∆ct

+ (δh0 + γ) (1− a (1))µ (F.19)

Et
[
rt+1 − rf,t+1|Θ̄

]
= δ0 + (δ − 1) h̄+ (− (δh0 + γ − 1) aw (L) + (δh0 + γ) a (L)) ∆ct

+ (δh0 + γ) (1− a (1))µ

+ log β − (1− aw (1))µw − aw (L) ∆ct +
1

2
σ2
w − (1− α) bw (β)σ2

w (F.20)
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Inserting the formula for (δ − 1) h̄+ log β + δ0 from above yields

(δ − 1) h̄+ log β + δ0 = −
(

1

2
(δh0 + γ − 1)2 + (δh0 + γ − 1) (1− α) bw (β)

)
σ2
w

− (δh0 + γ − 1) (1− aw (1))µw (F.21)

Et
[
rt+1 − rf,t+1|Θ̄

]
= (δh0 + γ) (a (L)− aw (L)) (∆ct − µ)

+ (δh0 + γ) (1− aw (1)) (µ− µw)

−1

2
varw (rm,t+1)− covw (rm,t+1,mt+1) (F.22)

where

varw (rm,t+1) = (δh0 + γ)2 σ2
w (F.23)

covw (rm,t+1,mt+1) = (δh0 + γ) (−1 + (1− α) bw (β))σ2
w (F.24)

Substituting in

δh0 + γ = δ
(γ − 1) aw (δ)

1− δaw (δ)
+ γ =

γ − δaw (δ)

1− δaw (δ)
(F.25)

yields the result from the text.

Et
[
rt+1 − rf,t+1|Θ̄

]
=

γ − δaw (δ)

1− δaw (δ)
(a (L)− aw (L)) (∆ct − µ)

+
γ − δaw (δ)

1− δaw (δ)
(1− aw (1)) (µ− µw)

−1

2
varw (rm,t+1)− covw (rm,t+1,mt+1) (F.26)

F.4 The behavior of interest rates

The mean of the risk-free rate is

− log β + (1− aw (1))µw + aw (1)µ− 1

2
σ2
w + (1− α) bw (β)σ2

w (F.27)

And its standard deviation is

std (aw (L) ∆ct) (F.28)

When consumption growth is white noise, this is

std (aw (L) ∆ct) = std

(β − θ)
∞∑
j=0

θj∆ct−j

 (F.29)

= (β − θ) σ∆c√
1− θ2

(F.30)
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We denote the log price on date t of a claim to a unit of consumption paid on date t+ j as pj,t, and we

guess that

pj,t = φ(j) (L) (∆ct − µw) + nj (F.31)

for a lag polynomial φ(j) and a constant nj that differ with maturity.

The pricing condition for a bond is

Mt+1 = β exp

(
−∆ct+1 + (1− α) bw (β) εΘw

t+1 −
(1− α)2

2
bw (β)2 σ2

w

)
(F.32)

φ(j) (L) ∆ct + nj = logEt

[
exp

(
log β −∆ct+1 + (1− α) bw (β) εΘw

t+1

− (1−α)2

2 bw (β)2 σ2
w + φ(j−1) (L) (∆ct+1 − µw) + nj−1

)
|Θw

]
(F.33)

= log β +
(
φ

(j−1)
0 − 1

)
(µw + aw (L) (∆ct − µw))− φ(j−1)

0 µw +

∞∑
k=0

φ
(j−1)
k+1 (∆ct−k − µw)

−(1− α)2

2
bw (β)2 σ2

w + nj−1 +
1

2

(
(1− α) bw (β)− 1 + φ

(j−1)
0

)2
σ2
w (F.34)

Matching coeffi cients yields,

φ(j) (L) =
(
φ

(j−1)
0 − 1

)
aw (L) +

∞∑
k=0

φ
(j−1)
k+1 Lk (F.35)

nj = log β − µw − (1− α)2

2
bw (β)2 σ2

w + nj−1 +
1

2

(
(1− α) bw (β)− 1 + φ

(j−1)
0

)2
σ2
w (F.36)

We also have the boundary condition that the price of a unit of consumption today is 1, so that n0 = 0

and φ(0) (L) = 0. Note that the mean price of any of these claims is

E [pj,t] = φ(j) (1) (µ− µw) + nj (F.37)

F.5 Results used in table 1

Under the worst-case, consumption growth follows an ARMA(1,1). We have

∆ct = β∆ct−1 + εt − θεt−1 (F.38)

aw (L) = (β − θ)
∞∑
j=0

θjLj (F.39)
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where θ ≡ (1− ϕ)β and ϕ is obtained above. We then have

aw (δ) =
β − θ
1− θδ (F.40)

aw (1) =
β − θ
1− θ (F.41)

bj = βj−1 (β − θ) (F.42)

For the coeffi cients in the price/dividend ratio, we have

(δhj+1 − hj) = − (δh0 + γ − 1) awj (F.43)

hj = (δh0 + γ − 1)
∞∑
k=0

δkawj+k (F.44)

= (δh0 + γ − 1)
∞∑
k=0

δk (β − θ) θj+k (F.45)

= (δh0 + γ − 1) (β − θ) θj

1− δθ (F.46)

And thus

pdt = h̄+
(δh0 + γ − 1) (β − θ)

1− δθ

∞∑
j=0

θj∆ct−j (F.47)

The standard deviation of the price/dividend ratio under the true white-noise process for consumption

growth is then

std (pdt) =
(δh0 + γ − 1) (β − θ)

1− δθ
σ̄√

1− θ2
(F.48)

F.6 Returns in the absence of model uncertainty

When there is no model uncertainty, the SDF is the same as in our main case, but everything is calculated

using the benchmark model instead of the worst case. For interest rates, then

rf,t+1 = − logEt

[
β exp

(
−∆ct+1 + (1− α) εΘ̄

t+1 −
(1− α)2

2
σ̄2

)
|Θ̄
]

(F.49)

= − log β + µ̄− 1

2
σ̄2 + (1− α) σ̄2 (F.50)

E [rf,t+1] = − log β + µ̄− 1

2
σ̄2 + (1− α) σ̄2 (F.51)

std (rf ) = 0 (F.52)
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For the price/dividend ratio, we have hj = 0 for all j, which implies

var (rm,t+1) = γ2σ̄2 (F.53)

cov (rm,t+1,mt+1) = −αγσ̄2 (F.54)

The standard deviation of the log pricing kernel is

std (mt+1) = −ασ̄ (F.55)

G Dividends cointegrated with consumption

Two drawbacks of our main specification for dividends are that it implies that dividend and consumption

growth are perfectly correlated and that it implies dividends are slightly more volatile than observed

empirically. To generate more realistic behavior for dividends, we now consider a setting where dividends

and consumption are cointegrated. We want to exactly match three major features of the joint dynamics

of consumption and dividends: the standard deviations of the two series, the correlation between the two

series, and the fact that dividends appear to be smoothed over time (Marsh and Merton (1987); Chen, Da,

and Priestley (2012)).

We assume the following model holds

dt = γgc (L) ct + gζ (L) ζt (G.1)

where ζt is a normally distributed innovation with unit variance and gζ (L) is a lag polynomial. We assume

that gζ (L) ζt is stationary with finite variance (the case where gζ (L) has a unit root would correspond

to a situation where dividends and consumption are no longer cointegrated, but their growth rates are

correlated).

The function gc (L) is what models dividends as a smoothed form of consumption. We normalize the

lag polynomial so that gc (1) = 1. As a simple example, if gc (L) = 1 + L + L2, then dividends are a

three-year moving average of consumption plus noise (gζ (L) ζt). Allowing a lagged response of dividends

to fundamentals (consumption) allows us to model the dividend smoothing observed in Marsh and Merton

(1987) and Chen, Da, and Priestley (2012).

γ represents the cointegrating coeffi cient between dividends and consumption —it determines how much

the long-run level of dividends responds to a unit shock to the long-run level of consumption.

In terms of growth rates we have

∆dt = γgc (L) ∆ct + g̃ζ (L) ζt (G.2)

g̃ζ (L) ≡ gζ (L) (1− L) (G.3)

We then recapitulate the analysis from above. Specifically, we add a superscript C to the coeffi cients
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in the price/dividend function to yield the guess

pdCt = h̄C +

∞∑
j=0

(
hCc,j∆ct−j + hCζ,jζt−j

)
(G.4)

rCt+1 = δ0 + δpdCt+1 + γgc (L) ∆ct+1 + g̃ζ (L) ζt+1 − pdCt (G.5)

The pricing equation for the dividend claim is

0 = logEt

β exp


δ0 + (δ − 1) h̄+

(
δhCc,0 + γgc,0 − 1

)
∆ct+1

+
∑∞

j=0

(
δhCc,j+1 + γgc,j+1 − hCc,j

)
∆ct−j

+ (1− α) bw (β) εΘw
t+1 −

(1−α)2

2 bw (β)2 σ2
w

+
(
δhCζ,0 + g̃ζ,0

)
ζt+1 +

∑∞
j=0

(
δhCζ,j+1 − hCζ,j + g̃ζ,j+1

)
ζt−j

 |Θw

 (G.6)

=
(
δhCc,0 + γgc,0 − 1

)
((1− aw (1))µw + aw (L) ∆ct) +

∞∑
j=0

(
δhCc,j+1 + γgc,j+1 − hCc,j

)
∆ct−j

+δ0 +

(
1

2

(
δhCc,0 + γgc,0 − 1

)2
+
(
δhCc,0 + γgc,0 − 1

)
(1− α) bw (β)

)
σ2
w + (δ − 1) h̄C + log β

+
∞∑
j=0

(
δhCζ,j+1 − hCζ,j + g̃ζ,j+1

)
ζt−j +

1

2

(
δhCζ,0 + g̃ζ,0

)2
σ2
ζ (G.7)

Matching coeffi cients on ∆ct−j , ζt−j , and on the constant yields three equations,

(δ − 1) h̄C + log β + δ0 = −
(

1

2

(
δhCc,0 + γgc,0 − 1

)2
+
(
δhCc,0 + γgc,0 − 1

)
(1− α) bw (β)

)
σ2
w

−
(
δhCc,0 + γgc,0 − 1

)
(1− aw (1))µw − 1

2

(
δhCζ,0 + g̃ζ,0

)2
σ2
ζ (G.8)

δhCc,j+1 − hCc,j = −
(
δhCc,0 + γgc,0 − 1

)
awj − γgc,j+1 (G.9)

δhCζ,j+1 − hCζ,j = −g̃ζ,j+1 (G.10)

And thus

hCc,j = δhCc,j+1 +
(
δhCc,0 + γgc,0 − 1

)
awj + γgc,j+1 (G.11)

hCc,0 =
∞∑
j=0

(
δhCc,0 + γgc,0 − 1

)
awj δ

j + δ−1
∞∑
j=1

γgc,jδ
j (G.12)

δhCc,0 + γgc,0 − 1 =
(
δhC0 + γgc,0 − 1

)
δaw (δ) + γgc (δ)− 1 (G.13)

δhCc,0 + γgc,0 − 1 =
γgc (δ)− 1

1− δaw (δ)
(G.14)
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δhCc,0 + γgc,0 =
γgc (δ)− δaw (δ)

1− δaw (δ)
(G.15)

Note that when gc (L) = 1, gc (δ) = 1, and gc = 1, so the above equation reduces to precisely what is

obtained above for δhCc,0 + γ − 1. Furthermore, note that for δ ≈ 1, gc (δ) ≈ gc (1) = 1.

For the coeffi cients on ζ, we have

δhCζ,0 + g̃ζ,0 = g̃ζ (δ) (G.16)

Note then that

varw (rm,t+1) =
(
δhCc,0 + γgc,0

)2
σ2
w + g̃ζ (δ)2 (G.17)

covw (rm,t+1,mt+1) =
(
δhCc,0 + γgc,0

)
(−1 + (1− α) bw (β))σ2

w (G.18)

So what we have is that the variance of the return is simply increased through the additional noise added

to dividends, g̃χ (δ)2, while the covariance is unaffected. Furthermore, we note that g̃ξ (1) = 0, so for δ

close to 1, we would expect the term g̃χ (δ)2 to be small.

G.1 Calibration

We leave the calibration of γ the same as in the main text. We also maintain the calibration that con-

sumption growth in the benchmark model is white noise. We then have

corr (∆c,∆d) = γgc,0
std (∆c)

std (∆d)
(G.19)

Following Bansal and Yaron (2004) (who use real dividend growth for the CRSP value-weighted index), we

set std (∆d) = 0.057 and corr (∆d,∆c) = 0.55, which then implies gc,0 = 0.44 (given the value of γ from

table 1). For the sake of simplicity, we assume that gc is a simple MA(1), yielding gc,,1 = 0.56 and gc,j = 0

for j > 1.

Finally, we calibrate g̃ζ to match the variance of dividend growth. We have

var (∆d) = γ2
(
g2
c,0 + g2

c,1

)
var (∆c) + var (g̃ζ (δ) ζt) (G.20)

Again, for the same of simplicity, we assume that the error gζ (L) = gζ,0, which implies that g̃ξ (L) =

gζ,0 − gζ,0L. Finally,
var (∆d) = γ2

(
g2
c,0 + g2

c,1

)
var (∆c) + 2g2

ζ,0 (G.21)

(under the normalization that var (ζt) = 1). Inserting the calibrated values for the other parameters, we

obtain

g2
ζ,0 =

1

2

(
var (∆d)− γ2

(
g2
c,0 + g2

c,1

)
var (∆c)

)
(G.22)

gζ,0 = 0.019 (G.23)
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That is, the final model of dividends is

dt = 2.13ct + 2.67ct−1 + 0.019ζt (G.24)

ζt ∼ N (0, 1) (G.25)

G.2 Expected excess returns

The expected excess return on the levered consumption claim from the perspective of an econometrician

who believes that consumption dynamics are the point estimate Θ̄ is

Et
[
rt+1|Θ̄

]
= Et


δ0 + (δ − 1) h̄+

(
δhCc,0 + γgc,0

)
∆ct+1

+
∑∞

j=0

(
δhCc,j+1 + γgc,j+1 − hCc,j

)
∆ct−j

+
(
δhCζ,0 + g̃ζ,0

)
ζt+1 +

∑∞
j=0

(
δhCζ,j+1 − hCζ,j + g̃ζ,j+1

)
ζt−j

|Θ̄

 (G.26)

= δ0 + (δ − 1) h̄+
(
δhCc,0 + γgc,0

)
Et
[
∆ct+1|Θ̄

]
−
(
δhCc,0 + γgc,0 − 1

)
aw (L) ∆ct(G.27)

= δ0 + (δ − 1) h̄−
(
δhCc,0 + γgc,0 − 1

)
aw (L) ∆ct

+
(
δhCc,0 + γgc,0

)
(µ+ a (L) (∆ct − µ)) (G.28)

Et
[
rt+1 − rf,t+1|Θ̄

]
= δ0 + (δ − 1) h̄+

(
δhCc,0 + γgc,0

)
(a (L)− aw (L)) (∆ct − µ)

+
(
δhCc,0 + γgc,0

)
(1− aw (1))µ

+ log β − (1− aw (1))µwt +
1

2
σ2
w − (1− α) bw (β)σ2

w (G.29)

Inserting the formula for (δ − 1) h̄+ log β + δ0 from above yields

Et
[
rt+1 − rf,t+1|Θ̄

]
=

(
δhCc,0 + γgc,0

)
(a (L)− aw (L)) (∆ct − µ)

+
(
δhCc,0 + γgc,0

)
(1− aw (1)) (µ− µw)

+
1

2
σ2
w − (1− α) bw (β)σ2

w

−
(

1

2

(
δhCc,0 + γgc,0 − 1

)2
+
(
δhCc,0 + γgc,0 − 1

)
(1− α) bw (β)

)
σ2
w

−1

2

(
δhCζ,0 + g̃ζ,0

)2
σ2
ζ (G.30)

Et
[
rt+1 − rf,t+1|Θ̄

]
=

γgc (δ)− δaw (δ)

1− δaw (δ)
(a (L)− aw (L)) (∆ct − µ)

+
γgc (δ)− δaw (δ)

1− δaw (δ)
(1− aw (1)) (µ− µw)

−covw (rm,t+1,mt+1)− 1

2
varw (rm,t+1) (G.31)
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where, from above,

varw (rm,t+1) =

(
γgc (δ)− δaw (δ)

1− δaw (δ)

)2

σ2
w + g̃ζ (δ)2 (G.32)

covw (rm,t+1,mt+1) =
γgc (δ)− δaw (δ)

1− δaw (δ)
(−1 + (1− α) bw (β))σ2

w (G.33)

G.3 Price/dividend ratio

δhCc,j+1 − hCc,j = −
(
δhCc,0 + γgc,0 − 1

)
awj − γgc,j+1 (G.34)

δhCζ,j+1 − hCζ,j = −g̃ζ,j+1 (G.35)

hζ,0 = gζ,1 (G.36)

hc,0 =
γgc (δ)− 1

1− δaw (δ)
(β − θ) 1

1− δθ + γgc,1 (G.37)

hc,j =
γgc (δ)− 1

1− δaw (δ)
(β − θ) θj

1− δθ (G.38)

So the standard deviation of the pricing kernel is now

pdCt =
∞∑
j=0

hCc,j∆ct−j + gζ,1ζt (G.39)

var
(
pdCt

)
=

(
γgc (δ)− 1

1− δaw (δ)

(β − θ)
1− δθ

)2 σ̄2

1− θ2 + g2
ζ,1 (G.40)

corr (pdt, pdt−4) =
θ4
(
γgc(δ)−1
1−δaw(δ)

(β−θ)
1−δθ

)2
σ̄2

1−θ2

var
(
pdCt

) (G.41)

G.4 Results

Table A1 reports an alternative version of table 1 in which we use the more sophisticated model of dividends

that are cointegrated with consumption growth. Since the consumption process is unchanged, there is no

effect on the worst-case model of consumption. The only difference between table A1 and table 1 is that

they use different models of dividends and hence have different implications for equity returns.

The mean and standard deviation of returns are both slightly reduced —the mean is lower by 5 basis

points and the standard deviation by 14 basis points. The small reduction is due to the fact that gc (δ) =

0.993. The difference between the returns under the two models of dividends depends purely on that term

being different from 1. The fact that it is not (which is a consequence of cointegration) is why the returns

are essentially unchanged. The autocorrelation and standard deviation of the price/dividend ratio are

also numerically nearly identical to what is obtained in table 1. Finally, the bottom two rows of table

A1 confirm that the model is calibrated here so that the standard deviation of dividend growth and the
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correlation between dividend growth and consumption growth is identical to the data (the data moments

are drawn from Bansal and Yaron (2004), as is the case with our other empirical targets).
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Table A1: Asset pricing moments for the white-noise benchmark – extended dividend model
Fundamental parameters Implied worst-case

σ Cons. vol. point est. 0.01465 σw 0.01470

b(β) Long-run vol. point est. 1 bw(β) 2.449
μ Mean cons. growth 0.0045 μw 0.0073
β Time discount 0.997 θ 0.99021
λ Ambiguity aversion 106.8 Standard Epstein–Zin / robust-control

α RRA (implied by λ) 4.73 b0 0.01465
γ Leverage 4.806 b(β) 1

Asset pricing moments (annualized)
Model Data

std(M) 0.30 N/A
E[R-Rf] 6.28 6.33
std(r) 19.27 19.42
AC1(PD) 0.95 0.81
std(P/D) 0.19 0.29
std(Δd) 11.49 11.49
corr(Δd,Δc) 0.55 0.55

Notes: see table 1. Results for the case where dividends are cointegrated with consumption but have transitory error. The 
standard deviation of dividends and correlation with consumption growth are taken from Bansal and Yaron (2004).



Table A2. Probability of rejecting the pricing model – extended results
Rejection probs. (5% critical value, H0=worst-case model)

50 years 100 years 250 years 500 years 1000 years
Ljung–Box 5.1% 5.1% 5.3% 5.7% 6.6%
ARMA(1,1) 3.7% 4.4% 9.0% 27.3% 77.9%
ARMA(1,1), fixed mean 5.4% 6.8% 13.3% 35.0% 82.3%
Newey–West(5) 6.0% 8.4% 24.9% 58.7% 89.7%
Newey–West(10) 5.9% 8.6% 23.2% 48.3% 75.6%
Newey–West(20) 5.8% 8.8% 23.5% 48.6% 73.4%

Notes: Rejection probabilities are obtained by simulating the distributions of the three statistics in 50- and 100-year simulations 
of the cases where consumption growth is generated by the worst-case and white-noise models and asking how often the 
statistics in the latter simulation are outside the 95% range in the former simulation. The numbers in parentheses in the 
Newey–West rows are lag orders. 



Table A3: Asset pricing moments for the white-noise benchmark – high discounting
Fundamental parameters Implied worst-case

σ Cons. vol. point est. 0.01465 σw 0.01472

b(β) Long-run vol. point est. 1 bw(β) 1.353
μ Mean cons. growth 0.0045 μw 0.0033
β Time discount 0.987 θ 0.97821
λ Ambiguity aversion 13.88 Standard Epstein–Zin / robust-control

α RRA (implied by λ) 6.65 b0 0.01465
γ Leverage 4.806 b(β) 1

Asset pricing moments (annualized)
Model Standard EZ Data

std(M) 0.25 0.19 N/A
E[R-Rf] 6.33 2.75 6.33
std(r) 18.10 14.08 19.42
E[rf] 5.94 6.40 0.86
std(rf) 0.26 0 0.97
AC1(PD) 0.92 N/A 0.81
std(P/D) 0.10 0 0.29
E[y10-rf] -7.8bp 0 N/A
EIS estimate 0 N/A 0.14

Notes: see table 1. This table uses a higher rate of time preference – 5 percent per year.  λ is then reduced to a value low 
enough to match the equity premium, which also implies a higher value of risk aversion. 
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